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Abstract

Modern architecture research relies heavily on detailed pipeline simulation.
Simulating the full execution of an industry standard benchmark can take weeks
to months. Statistical sampling and sample techniques like SimPoint that pick
small sets of execution samples have been shown to provide accurate results while
significantly reducing simulation time. The inefficiencies in sampling are (a)
needing the correct memory image to execute the sample, and (b) needing a
warm architecture state when simulating the sample.

In this paper we examine efficient Sampling Startup techniques addressing two
issues: how to represent the correct memory image during simulation, and how to
deal with warmup. Representing the correct memory image ensures the memory
values consumed during the sample’s simulation are correct. Warmup techniques
focus on reducing error due to the architecture state not being fully represen-
tative of the complete execution that proceeds the sample to be simulated. This
paper presents several Sampling Startup techniques and compares them against
previously proposed techniques. The end result is a practical sampled simulation
methodology that provides accurate performance estimates of complete benchmark
executions in the order of minutes.

1 Introduction

Modern computer architecture research relies heavily on cycle-accurate simula-
tion to help evaluate new architectural features. In order to measure cycle-level
events and to examine the effect that hardware optimizations would have on the
whole program, architects are forced to execute only a small subset of the pro-
gram at cycle-level detail and then use that information to approximate the full
program behavior. The subset chosen for detailed study has a profound impact
on the accuracy of this approximation, and picking these points so that they are
as representative as possible of the full program is a topic of several research
studies [1–4]. The two bottlenecks in using these sampling techniques are the
efficiency of having (a) the correct memory image to execute the sample, and
(b) warm architecture state when simulating the sample. We collectively refer
to both issues as Sampling Startup.

1.1 Sample Starting Image
The first issue to deal with is how to accurately provide a sample’s starting im-
age. The Sample Starting Image (SSI) is the state needed to accurately emulate



and simulate the sample’s execution to achieve the correct output for that sam-
ple1. The two traditional approaches for providing the SSI are fast-forwarding
and using checkpoints. Fast-forwarding quickly emulates the program’s execu-
tion from the start of execution or from the last sample to the current sam-
ple. The advantage of this approach is that this is trivial for all simulators
to implement. The disadvantage is that it serializes the simulation of all of
the samples for a program, and it is non-trivial to have a low-overhead fast-
forwarding implementation—most fast-forwarding implementations in current
simulators are fairly slow.

Checkpointing is the process of storing the program’s image right before
the sample of execution is to start. This is similar to storing a core dump of the
program so that it can be replayed at that point in execution. A checkpoint stores
the register contents and the memory state prior to a sample. The advantage of
checkpointing is that it allows for efficient parallel simulation. The disadvantage
is that if a full checkpoint is taken it can be huge and consume too much disk
space and take too long to load.

In this paper we examine two efficient ways of storing the SSI. One is a
reduced checkpoint where we only store in the checkpoint the words of memory
that are to be accessed in the sample we are going to simulate. The second
approach is very similar, but is represented differently. For this approach we
store a sequence of executed load values for the complete sample. Both of these
approaches take about the same disk space, which is significantly smaller than
a full checkpoint. Since they are small they also load instantaneously and are
significantly faster than using fast-forwarding and full checkpoints.

1.2 Sample Architecture Warmup

Once we have an efficient approach for dealing with the sample’s starting image
we also need to reduce as much error in simulation due to the architecture
components not being in the same state as if we simulated the full detailed
execution from the start of the program up to that simulation point. To address
this we examine a variety of previously proposed techniques and compare them
to storing the detailed state of the memory hierarchy as a form of architecture
checkpoint.

We first examine a technique called “Hit on Cold” which assumes that all
architecture components are cold and the first access to it during the sample’s
simulation is a hit. A second technique we study uses a fixed warmup period
before the execution of each sample. Recently, more sophisticated warmup tech-
niques [5–7] have focused on finding for each sample how far back in the instruc-
tion stream to go to start warming up the architecture structures. We examine
the performance of MRRL [6, 7] in this paper. An important advantage of this
type of technique is its accuracy. The disadvantage is that it requires architec-
ture component simulation for N million instructions before detailed simulation
of the sample, which adds additional overhead to simulation.

1 For convenience of exposition, we use ‘sample’ as a noun to refer to a sampling unit
and ‘sample’ as a verb to refer to collecting a sample unit.



The final technique we examine is storing an architecture checkpoint of the
major architecture components at the start of the sample. This Architecture
Checkpoint is used to faithfully recreate the state of the major architecture com-
ponents, such as caches, TLBs and branch predictors at the start of the sample.
It is important that this approach works across different architecture designs
for it to be used for architecture design space explorations. To that end, we ex-
amine a form of architecture checkpointing that allows us to create the smaller
size instances of that architecture component. For example, you would create
an architecture checkpoint of the largest cache you would look at in your design
space exploration study, and the way we store the architecture checkpoint will
allow smaller sizes and associativities to be faithfully recreated.

2 Sampled Simulation Background
Detailed cycle-by-cycle simulation of complete benchmarks is practically impos-
sible due to the huge dynamic instruction counts of today’s benchmarks (often
several hundred billions of instructions), especially when multiple processor con-
figurations need to be simulated during design space explorations. Sampling is
an efficient way for reducing the total simulation time. There exist two ways of
sampling, statistical sampling and phase-based sampling.

2.1 Statistical Sampling
Statistical sampling takes a number of execution samples across the whole exe-
cution of the program, which are referred to as clusters in [1] because they are
groupings of contiguous instructions. These clusters are spread out throughout
the execution of the program in an attempt to provide a representative cross-cut
of the application being simulated. Conte et al. [1] formed multiple simulation
points by randomly picking intervals of execution, and then examining how these
fit to the overall execution of the program for several architecture metrics (IPC,
branch and data cache statistics).

SMARTS [4] provides a version of SimpleScalar [8] using statistical simu-
lation, which uses statistics to tell users how many samples need to be taken
in order to reach a certain level of confidence. One consequence of statistical
sampling is that tiny samples are gathered over the complete benchmark execu-
tion. This means that in the end the complete benchmark needs to be function-
ally simulated, and for SMARTS, the caches and branch predictors are warmed
through the complete benchmark execution. This ultimately impacts the overall
simulation time.

2.2 SimPoint
The SimPoint [3] sampling approach picks a small number of samples, that when
simulated, accurately create a representation of the complete execution of the
program. To do this they break a program’s execution into intervals, and for
each interval they create a code signature. They then perform clustering on the
code signatures grouping intervals with similar code signatures into phases. The
notion is that intervals of execution with similar code signatures have similar
architecture behavior, and this has been shown to be the case in [3, 9–11]. There-
fore, only one interval from each phase needs to be simulated in order to recreate



a complete picture of the program’s execution. They then choose a representa-
tive from each phase and perform detailed simulation on that interval. Taken
together, these samples can represent the complete execution of a program. The
set of chosen samples are called simulation points, and each simulation point is
an interval on the order of millions of instructions. The simulation points were
found by examining only a profile of the basic blocks executed for a program.

In this paper we focus on studying the applicability of the Sample Startup
techniques presented for SimPoint. In addition, we also provide summary results
for applying these Sample Startup techniques to SMARTS.

3 Sampling Startup Related Work
This section discusses prior work on Sample Startup techniques. We discuss
checkpointing and fast-forwarding for obtaining a correct SSI, and warmup tech-
niques for obtaining an architecture checkpoint as accurately as possible.

3.1 Starting Sample Image
As stated in the introduction, starting the simulation of a sample is much faster
under checkpointing than under fast-forwarding (especially when the sample is
located deep in the program’s execution trace—fast-forwarding in such a case
can take several days). The major disadvantage of checkpoints however is their
size; they need to be saved on disk and loaded at simulation time. The checkpoint
reduction techniques presented in this paper make checkpointing a much better
alternative to fast-forwarding as will be shown in the evaluation section of this
paper.

Szwed et al. [12] propose to fast-forward between samples through native
hardware execution, called direct execution, and to use checkpointing to com-
municate the application state to the simulator. The simulator then runs the
detailed processor simulation of the sample using this checkpoint. When the end
of the sample is reached, native hardware execution comes into play again to
fast-forward to the next simulation point, etc. Many ways to incorporate direct
hardware execution into simulators for speeding up the simulation and emulation
systems have been proposed, see for example [13–16].

One requirement for fast-forwarding through direct execution is that the sim-
ulation needs to be run on a machine with the same ISA as the program that is to
be simulated. One possibility to overcome this limitation for cross-platform sim-
ulation would be to employ techniques from dynamic binary translation methods
such as just-in-time (JIT) compilation and caching of translated code, as is done
in Embra [17], or through compiled instruction-set simulation [18, 19]. Adding
a dynamic binary compiler to a simulator is a viable solution, but doing this
is quite an endeavor, which is why most contemporary out-of-order simulators
do not include such functionality. In addition, introducing JITing into a simula-
tor also makes the simulator less portable to host machines with different ISAs.
Checkpoints, however, are easily portable.

Related to this is the approach presented by Ringenberg et al. [20]. They
present intrinsic checkpointing, which takes the SSI image from the previous
simulation interval and uses binary modification to bring the image up to state
for the current simulation interval. Bringing the image up to state for the current



simulation interval is done by comparing the current SSI against the previous
SSI, and by providing fix-up checkpointing code for the loads in the simulation
interval that see different values in the current SSI versus the previous SSI. The
fix-up code for the current SSI then executes stores to put the correct data values
in memory. Our approach is easier to implement as it does not require binary
modification. In addition, when implementing intrinsic checkpointing one needs
to be careful to make sure the fix-up code is not simulated so that it does not
affect the cache contents and branch predictor state for warmup.

3.2 Warmup
There has been a lot of work done on warmup techniques, or approximating the
hardware state at the beginning of a sample. This work can be divided roughly
in three categories: (i) simulating additional instructions prior to the sample, (ii)
estimating the cache miss rate in the sample, and (iii) storing the cache content
or taking an architecture checkpoint. In the evaluation section of this paper, we
evaluate four warmup techniques. These four warmup techniques were chosen in
such a way that all three warmup categories are covered in our analysis.

Warmup N Instructions Before Sample - The first set of warmup ap-
proaches simulates additional instructions prior to the sample to warmup large
hardware structures [1, 4, 6, 7, 21–25]. A simple warmup technique is to provide a
fixed-length warmup prior to each sample. This means that prior to each sample,
caches and branch predictors are warmed by, for example, 1 million of instruc-
tions. MRRL [6, 7] on the other hand, analyzes memory references and branches
to determine where to start warming up caches and branch predictors prior to
the current sample. Their goal is to automatically calculate how for back in exe-
cution to go before a sample in order to capture the data and branch working set
needed for the cache and branch predictor to be simulated. MRRL examines both
the instructions between the previous sample and the current sample and the
instructions in the sample to determine the correct warmup period. BLRL [21],
which is an improvement upon MRRL, examines only references that are used
in the sample to see how far one needs to go back before the sample for accurate
warmup.

SMARTS [4] uses continuous warmup of the caches and branch predictors
between two samples, i.e., the caches and branch predictor are kept warm by
simulating the caches and branch predictor continuously between two samples.
This is called functional warming in the SMARTS work. The reason for sup-
porting continuous warming is their small sample sizes of 1000 instructions.
Note that continuously warming the cache and branch predictor slows down
fast-forwarding.

The warmup approaches from this category that are evaluated in this paper
are fixed-length warmup and MRRL.

Estimating the Cache Miss Rate - The second set of techniques does not
warm the hardware state prior to the sample but estimates which references in
the sample are cold misses due to an incorrect sample warmup [26, 27]. These
misses are then excluded from the miss rate statistics when simulating the sam-
ple. Note that this technique in fact does no warmup, but rather estimates what



the cache miss rate would be for a perfectly warmup hardware state. Although
these techniques are useful for estimating cache miss rate under sampled simula-
tion, extending these techniques to processor simulation is not straight-forward.
The hit-on-cold approach evaluated in this paper is another example of cache
miss rate estimation; the benefit of hit-on-cold over the other estimation tech-
niques is its applicability to detailed processor simulation.

Checkpointing the Cache Content - Lauterbach [28] proposes storing the
cache tag content at the beginning of each sample. This is done by storing tags
for a range of caches as they are obtained from stack simulation. This approach
is similar to the Memory Hierarchy State (MHS) approach presented in this
paper (see section 5 for more details on MHS). However, there is one significant
difference. We compute the cache content for one single large cache and derive
the cache content for smaller cache sizes. Although this can be done through
stack simulation, it is still significantly slower and more disk space consuming
than simulating only one single cache configuration as we do.

The Memory Timestamp Record (MTR) presented by Barr et al. [29] is also
similar to the MHS proposed here. The MTR allows for the reconstruction of the
cache and directory state for multiprocessor simulation by storing data about
every cache block. The MTR is largely independent of cache size, organization
and coherence protocol. Unlike MHS, its size is proportional to program memory.
This prior work did not provide a detailed comparison between their architectural
checkpointing approach and other warmup strategies; in this paper, we present
a detailed comparison between different warmup strategies.

3.3 SMARTS and TurboSMARTS
Wunderlich et al. [4] provide SMARTS, an accurate simulation infrastructure
using statistical sampling. SMARTS continuously updates caches and branch
predictors while fast-forwarding between samples of size 1000 instructions. In
addition, it also warms up the processor core before taking the sample through
the detailed cycle-by-cycle simulation of 2000 to 4000 instructions.

At the same time we completed the research for our paper, TurboSMARTS [30]
presented similar techniques that replace functional warming with a checkpointed
SSI and checkpointed architectural state similar to what we discuss in our paper.
In addition to what was studied in [30], we compare a number of reduced check-
pointed SSI techniques, we study the impact of wrong-path load instructions
for our techniques, and we examine the applicability of checkpointed sampling
startup techniques over different sample sizes.

4 Sample Starting Image
The first issue to deal with to enable efficient sampled simulation is to load
a memory image that will be used to execute the sample. The Sample Starting
Image (SSI) is the program memory state needed to enable the correct functional
simulation of the given sample.

4.1 Full Checkpoint
There is one major disadvantage to checkpointing compared to fast-forwarding
and direct execution for providing the correct SSI. This is the large checkpoint



files that need to be stored on disk. Using many samples could be prohibitively
costly in terms of disk space. In addition, the large checkpoint file size also affects
total simulation time due to loading the checkpoint file from disk when start-
ing the simulation of a sample and transferring over a network during parallel
simulation.

4.2 EIO Files and Checkpointing System Calls
Before presenting our two approaches to reduce the checkpoint file size, we first
detail our general framework in which the reduced checkpoint methods are inte-
grated. We assume that the program binary and its input are available through
an EIO file during simulation. We use compressed SimpleScalar EIO files; this
does not affect the generality of the results presented in this paper however. An
EIO file contains a checkpoint of the initial program state after the program has
been loaded into memory. Most of the data in this initial program image will
never be modified during execution. The rest of the EIO file contains information
about every system call, including all input and output parameters and memory
updates associated with the calls. This keeps the system calls exactly the same
during different simulation runs of the same benchmarks.

In summary, for all of our results, the instructions of the simulated program
are loaded from the program image in the EIO file, and the program is not stored
in our checkpoints. Our reduced checkpoints focus only on the data stream.

4.3 Touched Memory Image
Our first reduced checkpoint approach is the Touched Memory Image (TMI)
which only stores the blocks of memory that are to be accessed in the sample that
is to be simulated. The TMI is a collection of chunks of memory (touched during
the sample) with their corresponding memory addresses. The TMI contains only
the chunks of memory that are read during the sample. Note that a TMI is stored
on disk for each sample. At simulation time, prior to simulating the given sample,
the TMI is loaded from disk and the chunks of memory in the TMI are then
written to their corresponding memory addresses. This guarantees a correct SSI
when starting the simulation of the sample. A small file size is achieved by using
a sparse image representation, so regions of memory that consist of consecutive
zeros are not stored in the TMI. In addition, large regions of non-zero sections
of memory are combined and stored as one chunk. This saves storage space in
terms of memory addresses in the TMI, since only one memory address needs to
be stored for a large consecutive data region.

An optimization to the TMI approach, called the Reduced Touched Memory
Image (RTMI), only contains chunks of memory for addresses that are read
before they are written. There is no need to store a chunk of memory in the
reduced checkpoint in case that chunk of memory is written prior to being read.
A TMI, on the other hand, contains chunks of memory for all reads in the sample.

4.4 Load Value Sequence
Our second approach, called the Load Value Sequence (LVS), involves creating
a log of load values that are loaded into memory during the execution of the
sample. Collecting an LVS can be done with a functional simulator or binary



instrumentation tool, which simply collects all data values loaded from mem-
ory during program execution (excluding those from instruction memory and
speculative memory accesses). When simulating the sample, the load log se-
quence is read concurrently with the simulation to provide correct data values
for non-speculative loads. The result of each load is written to memory so that,
potentially, speculative loads accessing that memory location will find the cor-
rect value. The LVS is stored in a compressed format to minimize required disk
space. Unlike TMI, LVS does not need to store the addresses of load values.
However, programs often contain many loads from the same memory addresses
and loads with value 0, both of which increase the size of LVS without affecting
TMI.

In order to further reduce the size of the LVS, we also propose the Reduced
Load Value Sequence (RLVS). For each load from data memory the RLVS con-
tains one bit, indicating whether or not the data needs to be read from the
RLVS. If necessary, the bit is followed by the data value, and the data value is
written to the simulator’s memory image at the load address so that it can be
found by subsequent loads; otherwise, the value is read from the memory image
and not included in the RLVS. Thus the RLVS does not contain load values
when a load is preceded by a load or store for the same address or when the
value would be zero (the initial value for memory in the simulator). This yields
a significant additional reduction in checkpoint file sizes. An alternate structure
that accomplishes the same task is the first load log presented in [31].

5 Sample Warmup
In this paper we compare five warmup strategies, not performing any warmup,
hit on cold, 1M-instructions of detailed execution fixed warmup, MRRL and
stored architecture state. The descriptions in this section summarize the warmup
techniques in terms of how they are used for uniprocessor architecture simulation.
5.1 No Warmup
The no-warmup strategy assumes an empty cache at the beginning of each sam-
ple, i.e. assumes no warmup. Obviously, this will result in an overestimation of
the number of cache misses, and by consequence an underestimation of overall
performance. However, the bias can be small for large sample sizes. This strategy
is very simple to implement and incurs no runtime overhead.
5.2 Hit on Cold
The hit on cold strategy also assumes an empty cache at the beginning of each
sample but assumes that the first use of each cache block in the sample is always
a hit. The no warmup strategy, on the other hand, assumes a miss for the first
use of a cache block in the sample. Hit on cold works well for programs that
have a high hit rate, but it requires modifying the simulator to check a bit on
every cache miss. If the bit indicates that the cache block has yet to be used the
sample then the address tag is added to the cache but the access is considered
to be a hit.

An extension to this technique is to try to determine the overall program’s
average hit rate or the approximate hit rate for each sample, then use this
probability to label the first access to a cache block as a miss or a hit. We did
not evaluate this approach for this paper.



5.3 Memory Reference Reuse Latency
The Memory Reference Reuse Latency (MRRL) [6, 7] approach proposed by
Haskins and Skadron builds on the notion of memory reference reuse latency. The
memory reference reuse latency is defined as the number of dynamic instructions
between two consecutive memory references to the same memory location. To
compute the warmup starting point for a given sample, MRRL first computes the
reuse latency distribution over all the instructions from the end of the previous
sample until the end of the current sample. This distribution gives an indication
about the temporal locality behavior of the references.

MRRL subsequently determines wN which corresponds to the N% percentile
over the reuse latency distribution. This is the point at which N% of memory
references, between the end of the last sample to the end of the current sample,
will be made to addresses last accessed within wN instructions. Warming then
gets started wN instructions prior to the beginning of the sample. The larger
N%, the larger wN , and thus the larger the warmup. In this paper we use
N% = 99.9% as proposed in [6].

Sampled simulation under MRRL then proceeds as follows. The first step is
to fast-forward to or load the checkpoint at the starting point of the warmup
simulation phase. From that point on until the starting point of the sample, func-
tional simulation is performed in conjunction with cache and branch predictor
warmup, i.e. all memory references warm the caches and all branch addresses
warm the branch predictors. When the sample is reached, detailed processor
simulation is started for obtaining performance results. The cost of the MRRL
approach is the wN instructions that need to be simulated under warmup.

5.4 Memory Hierarchy State
The fourth warmup strategy is the Memory Hierarchy State (MHS) approach,
which stores cache state so that caches do not need to be warmed at the start
of simulation. The MHS is collected through cache simulation, i.e. functional
simulation of the memory hierarchy. Design-space exploration may require many
different cache configurations to be simulated. Note that the MHS needs to
be collected only once for each block size and replacement policy, but can be
reused extensively during design space exploration with smaller-sized memory
hierarchies. Our technique is similar to trace-based construction of caches, except
that storing information in a cache-like structure decreases both storage space
and time to create the cache required for simulation. In addition to storing cache
tags, we store status information for each cache line so that dirty cache lines are
correctly marked.

Depending on the cache hierarchies to be simulated, constructing hierarchies
of target caches for simulation from a single source cache created by functional
simulation can be complicated, so we explain the techniques used and the neces-
sary properties of the source cache. If a target cache i has si sets with wi ways,
then every cache line in it would be contained in a source cache with s′ = cisi

sets and w′ ≥ wi ways, where ci is a positive integer. We now describe how
to initialize the content of each set in the target cache from the source cache.
To initialize the contents of the first set in the target cache we need to look at



the cache blocks in ci sets of the source cache that map to the first set in the
target cache. This gives us ciw

′ blocks to choose from. For a cache with LRU
replacement we need to store a sequence number for the most recent use of each
cache block. We select the most recently used wi cache blocks, as indicated by
the data in our source cache, to put in the target set. The next ci sets of the
source cache initialize the second set of the target cache, and so forth. In general,
s′ = LCMi(si) and w′ = maxi(wi) ensure that the large cache contains enough
information to initialize all of the simulated cache configurations. In the common
case where si is always a power of two, the least common multiple (LCM) is just
the largest such value.

Inclusive cache hierarchies can be initialized easily as just described, but
exclusive cache hierarchies need something more. For example, assume that the
L2 cache is 4-way associative and has the same number of cache sets as a 2-way
associative L1 cache. Then the 6 most recently accessed blocks mapped to a
single cache set will be stored in the cache hierarchy, 2 in the L1 cache and 4
in the L2 cache. Thus the source cache must be at least 6-way associative. If,
instead, the L2 cache has twice as many sets as the L1 cache then the cache
hierarchy will contain 10 blocks that are mapped to the same L1 cache set, but
at most 6 of these will be mapped to either of the L2 cache sets associated with
the L1 cache set. The source cache still only needs to be 6-way associative.

We handle exclusive cache hierarchies by creating the smallest (presumably
L1) target cache first and locking the blocks in the smaller cache out of the larger
(L2, L3, etc.) caches. Then the sets in the larger cache can be initialized. Also,
the associativity of the source cache used to create our MHS must be at least
the sum of the associativities of the caches within a target cache hierarchy.

Unified target caches can be handled by collecting source cache data as if
the target caches were not unified. For example, if there are target IL1, DL1
and UL2 caches then data can be collected using the same source caches as if
there were IL2 and DL2 caches with the same configuration parameters as the
UL2 cache. Merging the contents of two caches into a unified target cache is
straight-forward. The source caches must have a number of cache sets equal to
the LCM of all the possible numbers of cache sets (both instruction and data)
and an associativity at least as large as that of any of the caches. Alternately,
if all of the target cache hierarchy configurations are unified in the same way
then a single source cache with the properties just described can collect all of
the necessary data.

Comparing MHS versus MRRL, we can say that they are equally architecture-
independent. MHS traces store all addresses needed to create the largest and
most associative cache size of interest. Similarly, MRRL goes back in execution
history far enough to also capture the working set for the largest cache of inter-
est. The techniques have different tradeoffs, however: MHS requires additional
memory space compared to MRRL, and MRRL just needs to store where to start
the warming whereas MHS stores a source cache. In terms of simulation speed,
MHS substantially outperforms MRRL as MHS does not need to simulate in-
structions to warm the cache as done in MRRL—loading the MHS trace is done



I Cache 8k 2-way set-assoc., 32 byte blocks, 1 cycle latency

D Cache 16k 4-way set-assoc., 32 byte blocks, 2 cycle latency

L2 Cache 1Meg 4-way set-assoc., 32 byte blocks, 20 cycle latency

Memory 150 cycle round trip access

Branch Pred hybrid

O-O-O Issue up to 8 inst. per cycle, 128 entry re-order buffer

Func Units
8-integer ALU, 4-load/store units, 2-FP adders, 2-integer
MULT/DIV, 2-FP MULT/DIV

Table 1. Processor simulation model.

very quickly. As simulated cache sizes increase, MHS disk space requirements
increase and MRRL warming times increase.

The techniques discussed in this paper can also be extended to warmup for
TLBs and branch predictors. For 1M-instruction simulation points, we only con-
sider sample architecture warmup for caches. We found that the branch predictor
did not have a significant effect until we used very small 1000-instruction inter-
vals with SMARTS. When simulating the tiny SMARTS simulation intervals we
checkpointed the state of branch predictor prior to each sample. While we can
modify TLB and cache checkpoints to work with smaller TLBs and caches, we
cannot yet do this in general for branch predictors. For experiments requiring
branch predictor checkpoints we simulate all of the branch predictors to be used
in the design space exploration concurrently and store their state in the sample
checkpoints.

6 Evaluation
We now evaluate Sample Startup for sampled simulation. After discussing our
methodology, we then present a detailed error analysis of the warmup and re-
duced checkpointing techniques. We subsequently evaluate the applicability of
the reduced checkpointing and warmup techniques for both targeted sampling
as done in SimPoint and statistical sampling as done in SMARTS.
6.1 Methodology
We use the MRRL-modified SimpleScalar simulator [6], which supports taking
multiple samples interleaved with fast-forwarding and functional warming. Minor
modifications were made to support (reduced) checkpoints. We simulated SPEC
2000 benchmarks compiled for the Alpha ISA and we used reference inputs for
all of these. The binaries we used in this study and how they were compiled can
be found at http://www.simplescalar.com/. The processor model assumed in
our experiments is summarized in Table 1.
6.2 Detailed error analysis
We first provide a detailed error analysis of our warmup techniques as well as
the reduced checkpointing techniques. For the error analysis, we consider 50
1M-instruction sampling units randomly chosen from the entire benchmark exe-
cution. We also experimented with a larger number of sampling units, however,
the results were quite similar.

The average CPI error is the average over all samples of the relative difference
between the CPI through sampled simulation with full warmup, versus the CPI
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Fig. 2. The 95% confidence interval as a percentage of CPI.
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through sampled simulation with the warmup and reduced checkpoint techniques
proposed in this paper. Our second metric is the 95% confidence interval for
average CPI error. Techniques that are both accurate and precise will have low
average CPI error and small confidence interval widths.

Figures 1 and 2 show the average CPI error and the 95% confidence interval,
respectively. In both cases they are expressed as a percentage of the correct CPI.
The various bars in these graphs show full SSI checkpointing along with a number
of architectural warmup strategies (no warmup, hit on cold, fixed 1M warmup,
MRRL and MHS), as well as a reduced SSI checkpointing technique, namely
LVS, in conjunction with MHS. We only present data for the LVS reduced SSI
for readability reasons; we obtained similar results for the other reduced SSI
techniques. In terms of error due to warmup, we find that the no-warmup, hit-
on-cold and fixed 1M warmup strategies perform poorly. MRRL and MHS on
the other hand, are shown to perform equally well. The average error is less than
a few percent across the benchmarks.

In terms of error due to the starting image, we see the error added due to the
reduced SSI checkpointing is very small. Comparing the MHS bar (MHS with
full checkpointing) versus the MHS+LVS bar, we observe that the error added
is very small, typically less than 1%. The reason for this additional error is that
under reduced SSI checkpointing, load instructions along mispredicted paths
might potentially fetch wrong data from memory since the reduced checkpointing
techniques only consider on-path memory references. In order to quantify this
we refer to Figures 3 and 4. Figure 3 shows the percentage of wrong-path load
instructions being issued relative to the total number of issued loads; this figure
also shows the percentage of issued wrong-path loads that fetched incorrect data
(compared to a fully checkpointed simulation) relative to the total number of
issued loads. This graph shows that the fraction of wrong-path loads that are
fetching uncheckpointed data is very small, 2.05% on average. Figure 4 then
quantifies the difference in percentage CPI error due to these wrong-path loads
fetching uncheckpointed data. We compare the CPI under full checkpoint versus
the CPI under reduced checkpoints. The difference between the error rates is
very small, under 1% of the CPI.

6.3 Targeted Sampling Using SimPoint

We now study the applicability of the reduced warmup and checkpointing tech-
niques for two practical sampling methodologies, namely targeted sampling us-
ing SimPoint, and statistical sampling using SMARTS. For these results we used
SimPoint with an interval size of 1 million with Max K set to 400. Figure 5 shows
the number of 1M-instruction simulation points per benchmark. This is also
the number of checkpoints per benchmark since there is one checkpoint needed
per simulation point. The number of checkpoints per benchmark varies from 15
(crafty) up to 369 (art). In this paper, we focus on small, 1M-instruction in-
tervals because SimPoint is most accurate when many (at least 50 to 100) small
(1M instructions or less) intervals are accurately simulated. However, we found
that the reduction in disk space is an important savings even for 10M and 100M
interval sizes when using a reduced load value trace. Figure 6 shows the accuracy



of SimPoint while assuming perfect sampling startup. The average error is 1.3%;
the maximum error is 4.8% (parser).

Storage Requirements - Figures 7 and 8 show the average and total sizes of
the files (in MB) that need to be stored on disk per benchmark for various Sample
Startup approaches: the Full Checkpoint, the Load Value Sequence (LVS), the
Reduced Load Value Sequence (RLVS), the Touched Memory Image (TMI) and
the Memory Hierarchy State (MHS). Clearly, the file sizes for Full Checkpoint
are huge. The average file size per checkpoint is 49.3MB (see Figure 7). The
average total file size per benchmark is 7.4GB (see Figure 8). Storing all full
checkpoints for a complete benchmark can take up to 28.8GB (lucas). The
maximum average storage requirements per checkpoint can be large as well, for
example 163.6MB for wupwise. Loading and transferring over a network such
large checkpoints can be costly in terms of simulation time as well.

The SSI techniques, namely LVS, RLVS, TMI and RTMI, result in a check-
point reduction of more than two orders of magnitude, see Figures 7 and 8. The
results for RTMI are similar to those for TMI, so they are not shown in the
Figure. Since TMI contains at most one value per address and no zeros, size im-
provements can only come from situations where the first access to an address
is a write and there is a later read from that address. This is fairly rare for the
benchmarks examined, so the improvements are small.

The average total checkpoint file sizes per benchmark for LVS, RLVS and
TMI are 93.9MB, 57MB and 52.6MB, respectively; the maximum total file sizes
for are 341MB, 224MB and 206MB, respectively, for applu. These huge check-
point file reductions compared to full checkpoints make checkpointing feasible in
terms of storage cost for sampled simulation. Also, the typical single checkpoint
size is significantly reduced to 661KB, 396KB and 365KB for LVS, RLVS and
TMI, respectively. This makes loading the checkpoints highly efficient.

Memory Hierarchy State (MHS) was the only warmup approach discussed
that requires additional storage. Figures 7 and 8 quantify the additional storage
needed for MHS. The total average storage needed per benchmark is 40MB.
The average storage needed for MHS per checkpoint is 256kB (8 bytes per cache
block). Note that this is additional storage that is needed on top of the storage
needed for the checkpoints. However, it can be loaded efficiently due to its small
size.

Error analysis - Figure 9 evaluates the CPI error rates for various Sample
Startup techniques as compared to the SimPoint method’s estimate using perfect
warmup — this excludes any error introduced by SimPoint. This graph compares
four sample warmup approaches: no warmup, hit-on-cold, fixed 1M warmup,
MRRL and MHS. The no warmup and hit-on-cold strategies result in high error
rates, 16% and 24% on average. For many benchmarks one is dramatically better
than the other, suggesting that an algorithm that intelligently chooses one or
the other might do significantly better. The fixed 1M warmup achieves better
accuracy with an average error of 4%; however the maximum error can be fairly
large, see for example for parser (17%). The error rates obtained from MRRL
and MHS are significantly better. The average error for both approaches is 1%.



As such, we conclude that in terms of accuracy, MRRL and MHS are equally
accurate when used in conjunction with SimPoint.

The error results discussed so far assumed full checkpoints. Considering a
reduced checkpoint technique, namely LVS, in conjunction with MHS increases
the error rates only slightly, from 1% to 1.2%. This is due to the fact that LVS
does not include load values for loads being executed along mispredicted paths.

Total simulation time - Figure 10 shows the total simulation time (in min-
utes) for the various Sample Startup techniques when simulating all simula-
tion points on a single machine. This includes fast-forwarding, loading (reduced)
checkpoints, loading the Memory Hierarchy State and warming structures by
functional warming or detailed execution, if appropriate.

The SSI techniques considered here are fast-forwarding, checkpointing, and
reduced checkpointing using the LVS—we obtained similar simulation time re-
sults for the other reduced checkpoint techniques RLVS, TMI and RTMI. These
three SSI techniques are considered in combination with the two most accurate
sample warmup techniques, namely MRRL and MHS. These results show that
MRRL in combination with fast-forwarding and full checkpointing are equally
slow. The average total simulation time is more than 14 hours per benchmark.
If we combine MHS with fast-forwarding, the average total simulation time per
benchmark cuts down to 5 hours. This savings over MRRL is achieved by replac-
ing warming with fast-forwarding and loading the MHS. Combining MHS with
full checkpointing cuts down the total simulation time even further to slightly
less than one hour. Combining the reduced checkpoint LVS approach with MHS
reduces the average total simulation time per benchmark to 13 minutes. We
obtained similar simulation time results for the other reduced checkpoint tech-
niques.

As such, we conclude that the Sample Startup techniques proposed in this
paper achieve full detailed per-benchmark performance estimates with the same
accuracy as MRRL. This is achieved in the order of minutes per benchmark
which is a 63X simulation time speedup compared to MRRL in conjunction
with fast-forwarding and checkpointing.

6.4 Using MHS and LVS with SMARTS

The SMARTS infrastructure [4] accurately estimates CPI by taking large num-
bers of very small samples and using optimized functional warming while fast-
forwarding between samples. Typical parameters use approximately 10000 sam-
ples, each of which is 1000 instructions long and preceded by 2000 instructions
of detailed processor warmup. Only 30M instructions are executed in detail,
so simulation time is dominated by the cost of functional warming for tens or
hundreds of billions of instructions.

We improved SMARTS’ performance by replacing functional warming with
our MHS and LVS techniques. Due to the very small sample length there was
insufficient time for the TLB and branch predictor to warm before the end of
detailed simulation warmup. Therefore, for SMARTS we enhanced MHS to in-
clude the contents of the TLBs and branch predictor. TLB structures can be



treated just like caches when considering various TLB sizes, but branch pre-
dictors need to be generated for every desired branch predictor configuration.
With these changes we were able to achieve sampling errors comparable to the
error rates presented in section 6.2 for the 1M-instruction samples. In addition,
the estimated CPI confidence intervals are similar to those obtained through
SMARTS.

Storing the entire memory image in checkpoints for 10000 samples is infea-
sible, so we used LVS. Due to the small number of loads in 3000 instructions,
a compressed LVS only required a single 4 kB disk block per sample. The total
disk space per benchmark for the LVS checkpoint is 40 MB. Disk usage however
is dominated by MHS, with total storage requirements of approximately 730 MB
for each benchmark. By comparison, our SimPoint experiments used under 100
MB on average for full LVS, 50 MB for RLVS and 40 MB for MHS. In terms
of disk space, SimPoint thus performs better than SMARTS. On average, the
total simulation time per benchmark for SMARTS with LVS and MHS is 130
seconds on average. About two-thirds of this time is due to decompressing the
MHS information. Our results assumed 10000 samples, but more samples may
be needed in order to reach a desired level of confidence, which would require
more simulation time.

In contrast to the fact that the amount of disk space required is approximately
8 times larger with SMARTS, SMARTS is faster than SimPoint: 130 seconds for
SMARTS versus 13 minutes for SimPoint. The reason for this is the larger of
number of simulated instructions for SimPoint than for SMARTS.

Concurrently with our work, the creators of SMARTS have released Tur-
boSMARTS [30], which takes a similar approach to the one that we have outlined
here. Their documentation for the new version recommends estimating the num-
ber of samples that should be taken when collecting their version of MHS and
TMI data. The number of samples is dependent upon the program’s variability,
so for floating-point benchmarks this can greatly reduce the number of samples,
but in other cases more samples will be required. As a result, the average disk
usage is 290 MB per benchmark, but varies from 7 MB (swim) to 1021 MB (vpr).
This is still over twice as large than the disk space required for SimPoint using
1 million interval sizes.

7 Summary
Today’s computer architecture research relies heavily on detailed cycle-by-cycle
simulation. Since simulating the complete execution of an industry standard
benchmark can take weeks to months, several researchers have proposed sam-
pling techniques to speed up this simulation process. Although sampling yields
substantial simulation time speedups, there are two remaining bottlenecks in
these sampling techniques, namely efficiently providing the sample starting im-
age and sample architecture warmup.

This paper proposed reduced checkpointing to obtain the sample starting
image efficiently. This is done by only storing the words of memory that are
to be accessed in the sample that is to be simulated, or by storing a sequence
of load values as they are loaded from memory in the sample. These reduced



checkpoints result in two orders of magnitude less storage than full checkpointing
and faster simulation than both fast-forwarding and full checkpointing. We show
that our reduced checkpointing techniques are applicable on various sampled
simulation methodologies as we evaluate them for SimPoint, random sampling
and SMARTS.

This paper also compared four techniques for providing an accurate hardware
state at the beginning of each sample. We conclude that architecture checkpoint-
ing and MRRL perform equally well in terms of accuracy. However, our archi-
tecture checkpointing implementation based on the Memory Hierarchy State is
substantially faster than MRRL. The end result for sampled simulation is that
we obtain highly accurate per-benchmark performance estimates (only a few per-
cent CPI prediction error) in the order of minutes, whereas previously proposed
techniques required multiple hours.
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