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Abstract

Processors that can simultaneously execute multiple
paths of execution will only exacerbate the fetch bandwidth
problem already plaguing conventional processors. On a
multiple-path processor, which speculatively executes less
likely paths of hard-to-predict branches, the work done along
a speculative path is normally discarded if that path is found
to be incorrect. Instead, it can be beneficial to keep these
instruction traces stored in the processor for possible future
use.

This paper introduces instruction recycling, where previ-
ously decoded instructions from recently executed paths are
injected back into the rename stage. This increases the sup-
ply of instructions to the execution pipeline and decreases
fetch latency. In addition, if the operands have not changed
for a recycled instruction, the instruction can bypass the is-
sue and execution stages, benefiting from instruction reuse.
Instruction recycling and reuse are examined for a simulta-
neous multithreading architecture with multiple path execu-
tion. It is shown to increase performance by 7% for single-
program workloads and by 12% on multiple-program work-
loads.

1 Introduction

Modern processors spend much of their time doing repeti-
tious tasks — fetching the same instructions and executing
them over and over again, sometimes even with the same
operand values. This is true of speculative processors, which
may execute an instruction down a speculative path, throw it
away, and execute the same instruction down the correct path
which has merged with the previous incorrect path. This is
even more evident in processors capable of executing along
multiple speculative paths [17, 5, 16, 7, 1, 18], where the
same instantiation of an instruction may be executed by sev-
eral threads or virtual processors. The fetch unit is highly
repetitious on any iterative task, even on a non-speculative
processor; but much more so on a multiple-path processor.

Modern processors exploit these recurrent instructions
via caches; the instruction cache avoids memory access by
the fetch unit, and the data cache saves the data for re-
executed loads with the same address. However, all other
stages of execution are repeated, even if the inputs of an in-
struction are unchanged. This paper examines a technique
for recycling previously-fetched instructions back through
the processor, saving fetch and decode bandwidth in the
worst case, and execution resources and latency in the best
case. Recycled instructions can augment the instructions
coming through the normal fetch path, which is typically
hampered by branch and cache line boundary fetch limita-
tions. This increases the bandwidth of instructions into the
machine in three ways. It increases the raw bandwidth into
the processor by merging recycled instructions with fetched
instructions. It increases fetch parallelism, as instructions
from more contexts can be introduced into the machine in a
single cycle. Third, recycled instructions re-enter the proces-
sor in the form of a trace, bypassing branch and cache line
boundaries.

Although many of the techniques examined in this pa-
per will also work for more conventional speculative proces-
sors, we study them within the context of a multiple-path
processor. These techniques apply to most of the multiple-
path architectures recently proposed, but our baseline ar-
chitecture is derived from our Threaded Multipath Execu-
tion (TME) architecture described in [18]. A TME proces-
sor uses idle hardware contexts on a simultaneous multi-
threading (SMT) [14, 15] processor to execute down both
paths at conditional branch points, potentially eliminating
the branch misprediction penalty. Our study [18] showed
that performance can be increased by creating threads in
hardware to execute instructions down both paths of cer-
tain hard-to-predict conditional branches. TME differs from
other multiple-path architectures by also allowing multiple
programs to be sharing the processor via SMT.

Other techniques that have been proposed to preserve
instruction cache and execution bandwidth are the Trace
Cache [10] and the Reuse Buffer [12]. The Trace Cache only
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bypasses the instruction cache, as all instructions still use all
pipeline stages, including fetch. The Reuse Buffer does not
bypass the fetch unit, but does bypass the execution stages
for instructions whose operands have not changed.

Unlike those mechanisms, we modify existing structures
to enable recycling, which minimizes the cost of additional
storage. We recycle the instructions directly from the active
lists (similar to a reorder buffer) in the TME architecture. In
addition, we examine recycling in an environment (multiple-
path execution) where the incidence of redundant fetch and
execution is much higher than traditional single-thread pro-
cessors.

Instruction recycling and reuse increase single-program
performance over TME by 7% on average. With multiple
programs running, where TME has been shown to be less ef-
fective, recycling and reuse achieve a 12% increase (for four
programs running on an eight-context processor) by easing
the contention for fetch resources.

This paper is organized as follows. We describe the
multiple-path architecture on which this research is based in
Section 2. The additional hardware to permit instruction re-
cycling is given in Section 3. Our evaluation methodology
is described in Section 4, and Section 5 presents our perfor-
mance results for a number of different architectural alter-
natives. Section 6 describes related research, and Section 7
summarizes our results.

2 Threaded Multiple Path Execution

A simultaneous multithreading processor allows multiple
threads of execution to issue instructions to the functional
units each cycle. This can provide significantly higher pro-
cessor utilization than conventional superscalar processors or
traditional multithreaded processors, which also use multi-
ple hardware contexts (program counters, registers) to boost
throughput and latency-tolerance. The ability to combine in-
structions from multiple threads in the same cycle allows
simultaneous multithreading to not only hide latencies, but
also to more fully utilize the issue width of a wide super-
scalar processor.

Threaded multi-path execution extends SMT by us-
ing unused contexts to execute both paths of conditional
branches. As a result, the processor resources can be more
fully utilized, and the probability of executing the correct
path is increased. By executing both paths of the branch,
TME can eliminate the branch misprediction penalties for
hard to predict branches [18].

The register renaming and mapping hardware of an
SMT/TME processor is particularly relevant to this discus-
sion. Register renaming takes place via a register mapping
scheme (similar to the MIPS R10000 [19]) extended for si-
multaneous multithreading and TME as shown in Figure 1.
Each instruction that writes a register removes a physical reg-
ister from the free list and writes a new mapping to the map-
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Figure 1: The register mapping scheme for an SMT/TME
processor (black data paths), with additions to support recy-
cling (gray paths).

ping table. When that instruction commits from the end of
an active list, it frees the physical register used by the pre-
vious mapping. Each context has its own active list so that
instructions can commit independent of the progress of other
threads.

Each context also requires its own mapping region to
translate its own set of logical registers, so the mapping table
of an 8-context SMT/TME processor has 8 mapping regions
as shown in Figure 1. Mapping tables in existing proces-
sors are shadowed by checkpoints, which are snapshots of
the table taken when a branch was encountered. The active
list in a conventional processor contains the physical regis-
ter mapping that will be freed if this instruction retires. In
the SMT/TME processor, the active list also contains that in-
struction’s new mapping, which will be freed if the instruc-
tion gets squashed. This is necessary because instructions in
different threads get squashed independently.

The following terms are used to describe the behavior
of the TME architecture: Primary-path thread — the thread
that has taken the predicted path through the code; alternate-
path thread — a thread that is executing an unpredicted path
through the code; idle context — a context that is not execut-
ing any thread; spare context — a context that is partitioned
to a primary thread to be used for alternate path execution;
fork a branch — take both paths of a branch; spawn a thread
— create an alternate-path thread.

To effectively follow both paths of a single branch, we
must be able to quickly duplicate the register state of the ex-
ecuting context to an idle context. A TME processor has a
single shared physical register file, so we can duplicate reg-
ister state simply by duplicating the first context’s register
map. The TME architecture does this via the Mapping Syn-
chronization Bus (MSB) [18]. The MSB partitions the reg-
ister map into groups of contexts. Each group includes one
primary thread and zero to seven alternate contexts available
to spawn alternate paths. All idle threads within a partition

2



are kept in sync with the primary thread using the MSB, so
that they are available for spawning immediately.

TME only spawns alternate threads off of branches in the
primary thread. Candidate branches are selected based on
branch confidence prediction methods [6]. When a branch
that spawned an alternate path is found to be mispredicted,
the alternate path thread becomes the primary thread, and
all idle threads use the MSB to re-synchronize with the new
primary thread. See [18] for a complete description of TME.

Results in [18] show that (1) TME achieved significant
speedups when a single (low branch accuracy) program was
running, (2) TME does not degrade the performance of SMT
when multiple programs are running, and (3) TME provides
the most benefit for programs with low branch prediction ac-
curacy. It does not degrade the performance of programs
with high branch prediction accuracy, because branch confi-
dence controls the spawning of alternate paths.

TME provides performance advantage when there are
idle resources, but it provides diminishing returns in per-
formance as more primary threads (programs or software
threads) are executed. In this situation, there is insufficient
fetch bandwidth to adequately serve all primary and alternate
paths, so the latter starve.

3 Hardware Support for Instruction Recycling

The active lists on a TME processor already contain pre-
dicted traces of fetched instructions. In this section, we
show how these traces can be exploited by recycling them
into the processor to provide higher instruction bandwidth.
Recycling saves fetch bandwidth, bypasses fetch limitations
(branches and cache lines), and can allow the reuse of in-
struction values to eliminate instruction latencies.

To enable instruction recycling and reuse, we need to (1)
preserve instruction information in the processor and keep it
around as long as possible, (2) detect when a thread should
stop fetching and begin gathering instructions through recy-
cling, (3) have a mechanism for identifying instructions that
need not be re-executed, and (4) have additional datapaths
to reinsert instructions back into the processor. In Figure 1,
the gray regions represent additions to the register renaming
architecture of a TME processor to support instruction re-
cycling. These include additional information stored in the
active list to reconstruct each instruction (this includes the
decoded opcode and physical and logical register operands)
and a new datapath from the active lists to the rename path
to inject those instructions back into the processor.

3.1 Managing Spare Contexts to Maximize Recy-
cling Availability

In TME, a spawned path is always squashed (i.e., active list
cleared, register mappings freed) as soon as a correctly pre-
dicted branch is resolved. However, with recycling, we want

to delay the squashing of alternate-path threads as long as
possible to maximize the opportunity to recycle instructions.
In the recycle architecture, a context can be either active or
inactive. An active context is currently executing either the
primary or an alternate path. An inactive context has fin-
ished executing, but the active list and registers have not been
freed, making it available for recycling. We will only see
idle contexts (not available for recycling) at startup. Nor-
mally, contexts will be kept inactive until just before they are
reclaimed for TME spawning.

In the TME/Recycle architecture, a primary path has a
number of spare contexts associated with it for executing al-
ternate paths. When a correctly-predicted branch is resolved,
the corresponding alternate thread (if there is one) stops ex-
ecuting, but it is not squashed, allowing the architecture to
use the instructions for recycling — the thread becomes inac-
tive. The current register map of the newly inactive thread is
then checkpointed, and the mapping is resynchronized with
the primary path. The re-synchronization allows the spare
context to be spawned for TME immediately when another
low confidence branch is encountered. Upon encountering a
low-confidence branch, the architecture identifies the least-
recently-used inactive context and reclaims it, squashing the
instructions in the active list and freeing the registers.

Under TME, we can have several alternate paths that start
at the same instruction, corresponding to various instantia-
tions of the same low-confidence branch. We would like to
minimize this duplication. We would rather preserve con-
texts to fork other branches, creating more unique starting
points for recycling. Therefore, instead of creating many al-
ternate paths with the same start point, we can re-spawn the
existing inactive context, when one already exists with that
start address. Re-spawning re-executes the instructions in
the inactive thread through the recycling data paths, making
it active again. Since recycling is used to provide the ini-
tial instructions down the alternative path, fetch bandwidth
is saved when re-spawning. Therefore, re-spawning main-
tains the benefits of TME, but with much less contention for
fetch resources compared to regular TME.

3.2 Identifying Merge Points

To determine when instructions from a context can be re-
cycled, we need to identify merge points, where the current
path has merged with another path that is available for recy-
cling. In particular, we want to determine when the primary
(most likely) path has merged with another path (that may
or may not still be active). Most often, the merge point is
the first instruction of the alternate context. For example, if
the alternate path begins at a branch target because the pri-
mary path predicted the branch not taken, the paths will most
likely merge in the future when the branch is later taken (or
predicted taken).
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To identify merge points the program counter (PC) of the
first instruction in the active list is stored with each hardware
context. The current PC that is used to fetch instructions for
the primary path is used to search the merge PCs of its spare
contexts and its own hardware context for a match. If a match
is found with an alternate path thread, subsequent instruc-
tions will come from the alternate active list once the prior
fetched instructions for that thread have cleared the rename
stage. If a match is found with the primary path hardware
context, we will be recycling instructions from the primary
path thread, back into its own active list. The recycling frees
the fetch unit to begin fetching from other threads, or perhaps
even further downstream for the same thread.

Since backward branches are common from loops in pro-
grams, we also record the target address of the last back-
wards branch for each context. It is searched along with the
first PC as a possible merge point. These are the only two
possible merge points for a particular context that we con-
sider. If another backwards branch is detected, it overwrites
the previous backward branch merge point. Also, if an in-
struction is inserted into the active list which overwrites the
first instruction of a backwards branch merge point, then the
merge point is invalidated. Hence, only loops smaller than
the current active lists are able to benefit from the backward
branch recycling.

3.3 Recycled Datapath

To enable recycling, an extra datapath is needed from the ac-
tive lists back through the renaming logic to be able to rein-
troduce this data into the pipeline. A recycled instruction
is read from the originating active list, makes a new pass
through register renaming, writes into a (potentially differ-
ent) active list, and (if not marked for reuse) into the instruc-
tion queue for execution. Recycled instructions, at a mini-
mum, bypass the fetch and decode stages (Figure 2). Reused
instructions can bypass the queue and execution (and sur-
rounding) stages as well.

Instructions which are recycled and instructions which
are fetched and decoded need to be merged in the rename
stage. We give highest priority to instructions from the
fetched paths, filling in empty slots with recycled instruc-
tions. The only constraint is that program order is maintained
for a thread that has instructions from both sources, which
may involve blocking instructions either trying to recycle or
coming from the decode stage.

Instruction fetch priority of a thread is determined by the
number of instructions in the pipeline. This is identical to the
ICOUNT fetch scheme used by Tullsen, et al. [14] (with the
same modifications for TME recommended in [18]), except
when instructions are recycled. In this case, the number of
instructions recycled is added immediately to the instruction
counter used for fetching priority. When multiple threads
want to recycle, a separate instruction counter is used to de-
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Figure 2: Instruction recycling allows instructions to bypass
parts of the processor pipeline.

termine the priority of those threads for insertion into the
rename stage. This counter uses the number of instructions
in the rename and queue stages only.

We assume no expansion of the rename stage to accom-
modate the two paths, which is 16 instructions wide in the
processor we simulate.

3.4 Recycling Instructions

When a merge point is detected, the processor begins recy-
cling instructions from the corresponding active list. Fetch-
ing immediately continues from where recycling will com-
plete. This is enabled by saving the PC of the instruction
after the last instruction in the active list, which will become
the new fetch target. The branch prediction previously used
for the recycled instructions can be used. The global his-
tory register used for branch prediction is then updated with
that prediction. Alternatively, when the instructions are read
from the active list, if the branch prediction differs, recycling
can stop and fetching continues on the newly predicted path.
For this paper, we use the latter method. The former method
still requires one more branch prediction per cycle than nor-
mal SMT/TME, because in the event that the predicted fetch
point for a thread is a merge point, we would like to be pre-
pared to use the fetch opportunity for other threads that cycle.
The latter method requires even higher prediction throughput
and should be considered an aggressive approach.

Each cycle, when the primary thread prepares to fetch,
it will compare its fetch PC (and following addresses) with
the merge points of itself and its alternate contexts. Also,
each thread that fetches will also compare its PC with its own
backward-branch merge point. If the match is on the initial
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PC, then there is no need to fetch from the instruction cache
for this thread, and another thread is sought for fetching. In
the case a match is found in the middle of a fetch block,
instructions are fetched up to the matching instruction, and
recycling begins after it.

3.5 Instruction Reuse

For some recycled instructions, execution can also be by-
passed. If none of the operands of a recycled instruction
have been changed, and the instruction was actually exe-
cuted, the old computed value can be reused [12]. We ac-
complish this by re-using the old register mapping (writing
it into the new mapping table entry) instead of re-mapping
the instruction. Subsequent instructions, either fetched or re-
cycled, then use the value already in the register. Reuse for
backward branch recycling is not allowed, given the way we
track register changes for re-use detection. Reuse is only al-
lowed for alternate to primary thread recycling.

Instructions can be reused more than once, but this com-
plicates register and context reclaiming — in particular, we
need to ensure we do not free a register (by squashing a con-
text in preparation for spawning) which another context is
still accessing due to re-use of the register mapping. We do
not free the registers used by a recyclable active list until (1)
TME wants to use the context to spawn a new path, and (2)
all other reuses of instructions in this path by the primary
path have completed. To implement this, we assume each al-
ternate path keeps track of the last reuse by its primary path.
When the primary path commits a result, it checks to see
if it is the last reuse among alternate paths and clears any
matches. Then the alternate path will be able to free all its
registers when it is used again to fork off a low-confidence
branch.

In order to determine if a register has changed since an
instruction was executed, a new structure is introduced. A
written bit-array of contexts indexed by logical registers is
used. When a new path is started on a context, the column of
register bits for that context is reset. When the primary con-
text makes a new instance of a register, then the row of con-
text bits for that register is set. As a result, when an operand
of a recycled instruction is checked during the renaming, the
corresponding bit for that register and context is looked up
in the array. If it is reset, then it has not been changed. If it
is set, then it has been changed and the instruction cannot be
reused.

We assume that load operations can be reused if the
source register, and thus the address, has not been changed
and there are no intervening stores to the same address. A
Memory Disambiguation Buffer (MDB) can be used to keep
track of loads whose values can be reused. The MDB pro-
vides hardware support to determine if a load instruction’s
address has been overwritten since the last time the load was
executed. The MDB is used to store the load PC and the ef-

fective addresses. When subsequent stores are executed, it
searches the MDB for its effective address. If the store finds
its address in the MDB, the load PC and address are removed
from the MDB. When recycling the load PC, if it is still lo-
cated in the MDB, then we can reuse its value. Otherwise,
the load has to be re-executed.

4 Evaluation Methods

All of our results are obtained using execution-driven simu-
lation of a multiple-thread processor running Alpha executa-
bles. The simulator models a simultaneous multithreading
processor extended for threaded multipath execution and re-
cycling, as described in Section 3. Instruction latencies are
based on the DEC Alpha 21264.

Our workload consists of eight of the SPEC95 bench-
marks. Six of the programs are integer benchmarks (com-
press, gcc, go, lisp, perl, and vortex) and two are floating
point (su2cor and tomcatv). Although most of the SPEC95
floating point programs do not benefit from TME due to high
branch prediction accuracy, there is potential for benefit from
recycling due to primary-path to primary-path recycling. All
of the benchmarks were compiled with the DEC cc (version
5.2) and f77 (version 4.1) compilers with full optimization
(-O5 -om).

We will look at recycling both with single-thread work-
loads and multiple-thread workloads (multiple single-thread
applications running simultaneously). For the multi-thread
workloads, the results shown consist of the average of eight
permutations of the benchmarks that weight each of the
benchmarks evenly in the results.

4.1 Baseline Architecture Model

We evaluate instruction recycling in the context of a future-
generation 16-wide SMT/TME processor with 8 hardware
contexts. It has the ability to fetch eight sequential instruc-
tions from each of two different threads each cycle. Those
instructions, after decoding and register renaming, find their
way to one of two 64-entry instruction queues. Instructions
are issued to the functional units (6 floating point, 12 inte-
ger, 8 of which also can do load-store operations) when their
register operands are ready. This is an aggressive design,
but exposes many of the problems future processors will ex-
hibit. We also examine more conservative architectures in
Section 5.3.

The simulated memory hierarchy has 64KB direct-
mapped instruction and data caches, a 256 KB 4-way set-
associative on-chip L2 cache, and a 4 MB off-chip cache.
Cache line sizes are all 64 bytes. The on-chip caches are
all 8-way banked. Throughput as well as latency constraints
are carefully modeled at all levels of the memory hierarchy.
Conflict-free miss penalties are 6 cycles to the L2 cache, an-
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other 12 cycles to the L3 cache, and another 62 cycles to
memory.

Branch prediction is provided by a decoupled branch tar-
get buffer (BTB) and pattern history table (PHT) scheme [2].
We use a 256-entry BTB, organized as four-way set asso-
ciative. The 2K x 2-bit PHT is accessed by the XOR of
the lower bits of the address and the global history regis-
ter [9, 20]. Return destinations are predicted with a 12-entry
return stack (per context).

The assumed processor has a 9-stage pipeline, with a
minimum 7-cycle branch misprediction penalty. We assume
each register file (fp and integer) has enough registers to store
the logical registers of the eight contexts (when all eight con-
texts are being used), plus 100 more for register renaming.
This is the same number used in many previous SMT stud-
ies, even though recycling (and the larger machine) puts ad-
ditional pressure on the renaming registers.

5 Results

This section examines the performance of instruction recy-
cling and reuse, examines policies for fetch and execution
after a context becomes inactive, and considers the effective-
ness of recycling techniques on some alternate architectures.

5.1 Recycling, Reusing and Respawning

The baseline instruction recycling architecture extends the
previously described SMT/TME architecture by saving exe-
cuted instructions in the active list even after the thread be-
comes inactive, and enables their injection into the archi-
tecture. This eliminates refetching and in some cases re-
execution of the instruction, and significantly increases fetch
bandwidth.

Figures 3 and 4 show the performance for the default
SMT and TME architectures and recycling with and without
re-spawning and reuse. The architectural parameters shown
are as follows:

� SMT This is the base simultaneous multithreading ar-
chitecture. It can only exploit inter-thread parallelism
when there are multiple threads running.

� TME Threaded multiple-path execution can exploit
parallelism between multiple paths in the same in-
struction stream, but puts high demand on the fetch
and execution units for the occasional benefit of a mis-
predicted branch. The rest of the results all include
TME and one or more of the following optimizations.

� REC Recycling. Instructions from alternate paths,
inactive threads, or even the primary thread, can be
merged at the rename stage with fetched instructions.
(This does not include the Reuse and Re-spawn op-
tions.)

� RU Reuse. Recycled instructions from inactive
threads whose operands are unchanged are not dis-
patched to the instruction queue. Rather, the old result
is reused.

� RS Re-spawning of identical paths. The REC result
suffers from the design decision to not spawn threads
with an identical start address as an existing alter-
nate or inactive thread. This increases the number of
unique merge points available for recycling, but de-
creases opportunities for TME. The RS architecture
re-spawns an inactive thread that matches the start ad-
dress of a path TME wants to spawn. But it is re-
spawned via recycling, without consuming fetch band-
width.

In single-program execution, recycling is effective any
time TME is effective, although in one case recycling alone
(without reuse) actually under-performs TME (compress).
That is also the program where we get the largest benefit
from reuse. Reuse, on average, increases performance by
about 2%. Re-spawning provides speedup in about half of
the applications (about 2% increase on average over REC).
The best combination (REC/RS/RU) had an average 7% im-
provement over TME.

For multiple programs, the benefits of recycling go up
significantly, just as the benefits of TME (over SMT) are
dropping. With multiple programs, competition for the fetch
unit is high, rendering TME ineffective while magnifying the
importance of fetch-conservation through recycling. Instruc-
tion reuse is not as important, only increasing performance
by about half a percent on average. Re-spawning still pro-
vides a 2% increase in performance. With the best configu-
ration, performance is improved by 12% over normal TME
with four programs running.

Table 1 lists recycling statistics. The first two columns
show the percentage of all instructions (including squashed
ones) inserted into the rename stage that were recycled and
reused, respectively. Branch Miss Cov gives the percentage
of mispredicted branches that were successfully covered by
speculatively forking. The next three columns give the per-
centage of forked paths used successfully by TME, recycled,
or respawned at least once, relative to the total number of
branches forked. Merges Per Alt Path gives the average num-
ber of merges from a given recycled alternate path before it
was deleted (this does not include backward branch merges).
Finally, Back Merges is the percentage of all merges that
were from backward branches.

From Table 1 we can see that the level of recycling is gen-
erally very high. 17-61% (average of 33% for one thread) of
all forked (spawned) paths are used for recycling, and 9-56%
(average, 27% for one thread) of instructions introduced into
the machine come from recycling. 6% of instructions intro-
duced into the machine are actually reused. As the number
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Figure 3: Performance of recycling with reuse and respawning for individual programs.
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Figure 4: Average Performance of Recycling with Reuse and Respawning when running 1, 2 and 4 programs at once.

of programs increases, reliance on alternate to primary re-
cycling and reuse goes down, while reliance on primary to
primary backward branch recycling goes up. This is due to a
decrease in the number of alternate contexts available to hold
recyclable instructions per program, and explains the lower
importance of reuse with multiple programs in Figure 4.

In addition, TME still does a good job at covering mis-
predicted branch paths with an average coverage of 67% for
four program and 72% for single program results.

5.2 Recycling Fetch Limits

With recycling, instructions can be useful even after the
branch is resolved that identifies the instructions as on the
wrong-path. That may even be true for instructions that have

not been fetched or executed yet along this path. We examine
continuing fetch and/or execution after the path becomes in-
active, up to various cutoff points (in total number of instruc-
tions). The danger in stopping immediately is that a context
with just one or two instructions does not have enough in-
structions to enable effective recycling, yet that context can
inhibit future spawning of threads. The danger in fetching
too long is that we occupy fetch bandwidth for instructions
that may have a low likelihood of being used.

Figure 5 shows results for the following policies:

� stop 8, 16, 32 — stop immediately when the branch
is resolved and the context becomes inactive. In addi-
tion, it does not allow TME to ever follow an alternate
path for more than 8, 16, or 32 instructions.
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% Instrs % Branch % Forks Merges Per % Back
Program Recycle Reuse Miss Cov TME Recyc Respawn Alt Path Merges
compress 55.9 14.2 66.5 18.3 61.1 25.8 1.9 57.3
gcc 22.4 7.8 80.1 17.1 28.4 4.4 1.6 35.2
go 24.3 10.3 84.6 20.3 26.7 3.5 1.5 41.1
li 31.9 5.7 81.8 19.9 41.0 12.6 2.3 47.5
perl 9.0 1.4 92.4 11.3 17.2 3.8 1.8 76.1
su2cor 32.0 4.2 78.5 11.9 34.7 8.8 1.9 41.9
tomcatv 25.1 0.5 3.5 0.4 28.7 17.9 1.2 17.8
vortex 13.7 3.8 85.2 22.3 22.0 3.7 1.7 35.5
1 prog avg 26.8 6.0 71.6 15.2 32.5 10.1 1.7 44.1
2 progs avg 24.5 4.7 77.5 20.4 26.1 4.2 1.5 57.2
4 progs avg 22.0 2.6 66.6 29.1 13.2 0.9 1.1 80.4

Table 1: Recycling Statistics
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Figure 5: Effects of different recycling fetch limits.

� fetch 8, 16, 32 — do not issue any more instruc-
tions for execution after branch resolution, but con-
tinue fetching up to the total 8, 16, or 32 instruction
limit.

� nostop 8, 16, 32 — continue fetching up to a total of 8
to 32 instructions, and send all of those instructions to
the instruction queue to be scheduled for execution.

Although the results indicate this is not a major perfor-
mance factor, a fetch limit of 8 instructions for an alternate
thread achieves some performance gain over fetching more.
Most of the performance savings appears to be achieved in
the first block of instructions and fetching more blocks re-
sults in using too much fetch bandwidth relative to the return
received. Stopping immediately after resolution worked well
for most programs; however, the results indicate that all of
the policies provide acceptable performance.

5.3 Performance for Limited Resource Architec-
tures

Our architecture has assumed an aggressive processor which
can fetch 16 instructions from 2 threads each cycle and ex-
ecute as many as 18 in a cycle. We now examine the per-
formance of recycling, respawning and reuse (we’ ll call the
combination recycling for brevity) with three less aggressive
architectures. We will examine three new processor design
points. We will look at the same 18 functional-unit proces-
sor, but with reduced fetch bandwidth, allowing only one
thread to fetch up to eight consecutive instructions per cy-
cle (this is the big.1.8 result, the baseline is big.2.16). We
will also look at two machines about half the size (with half
the functional units and half the cache and instruction queue
sizes as our baseline processor) and the eight-instruction
fetch bandwidth filled by one (the small.1.8 result) or two
threads (the small.2.8 result). These machines correspond
closely to the processors in [14, 18].

For multiple programs, recycling improves performance
over TME and SMT for all architecture configurations. Re-
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cycling supplies the larger architecture with primary and al-
ternate instructions effectively and it greatly benefits from
the additional instructions. For the smaller architecture, re-
cycling improves the performance of 1.8 fetching so that a
more complicated 2.8 fetching mechanism becomes less nec-
essary.

While recycling is effective for all of these architectures,
it is most effective when the fetch unit is least able to fill
the fetch bandwidth — the 1.8 fetch scheme for the small
machine, and the 2.16 fetch scheme for the big machine.

6 Related Work

There have been several studies describing architectures
that can follow multiple paths through execution concur-
rently [17, 5, 16, 7, 1, 18]. All of these multiple path ar-
chitectures create a scenario of high redundancy in the pro-
cessor, which can be exploited with instruction recycling.

The Speculative Multithreaded (SM) processor [8], and
the Multiscalar processor [13] are two speculative architec-
tures that allow aggressive loop-based speculation. If all the
hardware contexts are executing similar paths in the loop,
these architectures could benefit from instruction recycling.
The Speculative Multithreaded processor can take advantage
of this in its fetch scheme, since each thread context has its
own rename stage. In SM, only one thread context is al-
lowed to fetch from the cache at a time, but the instructions
are broadcast to all the thread contexts. Therefore, if other
contexts are waiting on the same instructions they will also
benefit from the fetch.

In our TME/Recycle architecture, we use the active lists
as small caches of instruction traces. This provides a simi-
lar effect to a trace cache [10]. A trace cache collects traces
of instructions, allowing those instructions to be placed in
the processor at a higher rate than they can be fetched from
the instruction cache, fetching multiple basic blocks per cy-
cle. However, there are key differences between the recy-
cling architecture and trace caches. The trace cache design
does not allow the trace-path instructions and the instruction-
cache path instructions to be introduced into the machine in
the same cycle — in a multithreaded environment, recycling
benefits from the increased parallelism of bringing instruc-
tions from multiple sources and multiple threads into the
processor in a single cycle. Also, the recycling architecture
requires much less additional hardware storage than a large
trace cache, both because it takes advantage of some data
that is already in the active list, but also because we only
keep a few traces that prove to be beneficial (those that are
not used are quickly reclaimed). The recycling architecture
is also unique in its ability to construct useful traces along
paths not yet (or not recently) taken.

Smotherman and Franklin [11] propose a decoded in-
struction cache to address the complexity of decoding CISC
instructions. That cache can operate as a trace cache, hold-

ing non-contiguous instructions, but also can reduce the fetch
latency when it hits, like recycling. Our proposed recycling
architecture differs from that work in all the aspects listed in
the previous paragraph.

Sodani and Sohi [12] use the reuse buffer to identify in-
structions which do not need to be re-executed because their
operands have not changed. Our technique for identifying
instructions that can be reused is similar to their Sn tech-
nique. In fact, their approach to reuse is more general than
the one examined in our paper, and may provide a higher
rate of reuse in some cases, but at a cost of more special-
ized hardware to store values. Their scheme concentrates on
reuse and does not seek to reduce fetch bandwidth. We are
also examining reuse in the context of a very different archi-
tecture, one that aggressively executes down low confidence
paths, providing higher opportunities for reuse.

The Memory Disambiguation Buffer we describe to
record which load values can be reused is similar to the
Memory Conflict Buffer (MCB) proposed by Gallagher et.
al. [4]. The MCB provides a hardware solution with com-
piler support to allow load instructions to speculatively ex-
ecute before stores. The addresses of speculative loads are
stored with a conflict bit in the MCB. All potentially am-
biguous stores probe the MCB and set the conflict bit if the
store address matches the address of a speculative load. An-
other approach for memory disambiguation was proposed by
Franklin and Sohi [3], called the Address Resolution Buffer
(ARB). The ARB directs memory references to bins based
on their address and uses the bins to enforce a temporal or-
der among references to the same address.

7 Summary

This paper presents a new architecture to enable instruc-
tion recycling and reuse. We examine the performance of
this new approach in the presence of threaded multiple path
execution and simultaneous multithreading. The TME ar-
chitecture naturally creates traces of instructions that can
be moved, through recycling, at high rates and low latency
back into execution. Instruction re-use increases the gain by
bypassing nearly the entire pipeline for instructions whose
operands have not changed. Thread re-spawning allows
multiple-path execution to rely more heavily on recycling for
creating alternate paths. This greatly reduces the contention
for fetch bandwidth that previously rendered TME ineffec-
tive with multiple programs.

The results show that instruction recycling achieves an
average 11% improvement over SMT and an average 7% im-
provement over TME when there is one primary thread. With
multiple primary threads, instruction recycling achieves an
average improvement of 12%. We found that conservative
approaches to TME and recycling, stopping after 8 instruc-
tions down an alternate or inactive path, perform very well.
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Figure 6: Instruction recycling for different fetch bandwidths.

We also show that recycling is effective on a variety of archi-
tectures, from 8-wide to 16-wide.
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