
This paper appeared in the 2nd International Symposium on High Performance Computer Architecture, San Jose, February 1996.

Predictive Sequential Associative Cache

Brad Calder Dirk Grunwald
Department of Computer Science,

University of Colorado, Campus Box 430
Boulder, CO 80309-0430

calder,grunwald@cs.colorado.edu

Joel Emer
Digital Semiconductor,

77 Reed Road (HLO2-3/J3)
Hudson, MA 01749

emer@vssad.hlo.dec.com

Abstract

In this paper, we propose a cache design that provides
the same miss rate as a two-way set associative cache,
but with a access time closer to a direct-mapped cache.
As with other designs, a traditional direct-mapped cache is
conceptually partitioned into multiple banks, and the blocks
in each set are probed, or examined, sequentially. Other
designs either probe the set in a fixed order or add extra
delay in the access path for all accesses. We use predic-
tion sources to guide the cache examination, reducing the
amount of searching and thus the average access latency.
A variety of accurate prediction sources are considered,
with some being available in early pipeline stages. We feel
that our design offers the same or better performance and
is easier to implement than previous designs.

1 Introduction

Set-associative caches offer lower miss rates than direct-
mapped caches, but usually have a longer access time. In
a set-associative cache, cache blocks are divided into sets
and a single fetch address may find its data in any block of
its set. When referencing a cache set, the blocks are exam-
ined in parallel. When all blocks and, in specific, their tags
have been read from the set, a tag comparator selects the
block containing the desired data, and passes the data from
that block to the processor. The comparator introduces an
extra delay between the availability of the cache data and
the time it can be used by the processor, because the cache
can not send the data to the processor, even speculatively,
until the comparison is finished. This, among other factors,
increases the cache access or cycle time. By contrast, in a
direct-mapped cache, a fetch address can only access a sin-
gle block, and the data from that block can be speculatively
dispatched while the tags are compared, thus reducing the
critical path length. The CACTI cache timing simulator [14]
can be used to approximate the increased access time for
a two-way set-associative cache. For caches with 32 byte
cache lines, the same configuration used in our simulation
study, the access time for a two-way associative cache is
51%, 46% and 40% times longer than the access time for

a direct mapped cache for 8KB, 16KB and 32KB caches,
respectively.

The design tradeoff between miss rate and access time
in set-associative caches versus direct mapped caches has
led several researchers to suggest ways to achieve miss
rates similar to two-way set-associative caches with fast
access times by using modified direct-mapped caches that
use a serialized or sequential search to compare tags in set-
associative caches. In most of these schemes, the cache
is divided into sets with 2 blocks per set. Cache access is
sequential; first one block is probed, and if the tag doesn’t
match the second block in the set is probed. If no match is
found, a miss occurs. If the cache line is usually found in
the first block to be examined, the average access time will
be less than a direct-mapped cache (because the miss rate
would be similar to a two-way set-associative cache) and
less than that of a two-way set-associative cache (because
the cycle time is that of a faster direct-mapped cache).

In this paper, we compare and extend several proposed
schemes for implementing two-way set-associative caches
at the first level of the memory hierarchy. Our technique
uses a number of prediction sources to pick the first block
in a set to probe. These predictors include information
about the source or destination of a fetch, the instruction or
procedure fetching the data and the effective fetch address.
Our technique offers the low miss rate of a two-way set-
associative cache and the low cycle time of a direct-mapped
cache; the performance varies with the accuracy of the pre-
diction information. The source for prediction information
can be adjusted for pipeline constraints; implementors can
trade lower prediction rates for the freedom to reduce tim-
ing constraints. In this paper, we examine only two-way
set-associative caches; while higher degrees of associativ-
ity can be implemented using these techniques, there are
fewer advantages at higher associativities.

2 Prior Work
Sequential or serial implementations of two-way set-

associative caches can be categorized along two dimen-
sions. First, they can be categorized by whether the cache
is probed in a statically fixed order, or if it is probed in a
dynamically determined order. Second, they can be cate-
gorized by the block allocation (and re-allocation) policy.
The addition of a block re-allocation policy is especially
important in those schemes with a fixed probe order.

We will use the diagrams in Figure 1 to clarify issues
in the various serial set-associative designs. We assume
the reader is familiar with the design of direct-mapped
caches and the conventional implementation of two-way
set-associative caches that compare multiple tags at once.
We assume each cache entry has an L-bit set index and
a tag. We use a word-addressed cache and word-sized
block to describe the various cache organizations to sim-
plify their description. A direct-mapped cache contains
2L cache blocks; when a block address is to be fetched or
loaded into the cache, the lower L bits are used to index
into the cache. When fetching an item from the cache, the
remaining address bits are compared to the tag; if these
match, the item is successfully found in the cache, other-
wise a cache miss occurs. In a two-way set-associative
cache, only L� 1 bits are used as a set index. Each cache
set contains two blocks. In a conventional design, the tags
in both blocks are compared concurrently when fetching
an address. If either tag matches, the reference has been
found. New entries may be loaded into either block, as
determined by the block allocation policy. Usually a least-
recently-used mechanism is employed. A set-associative
cache typically has a lower miss rate than a direct-mapped
cache, but is more difficult to implement and increases the
cache access time [5].

2.1 Statically Ordered Cache Probes
Agarwal et al [1] proposed the Hash-Rehash cache (HR-

Cache) to reduce the miss rate of direct-mapped caches.
Although the Hash-Rehash cache can be used to imple-
ment arbitrary associativity, we only consider a two-way
set-associative cache, since that is the most cost-effective
configuration. The HR-cache organization uses a fixed
probe order and a non-LRU cache allocation/re-allocation
scheme to maximize the number of first probes that hit.

Figure 1(a) illustrates the structure of the HR-cache.
The cache blocks are divided into two banks. Each bank
contains one of the two blocks that comprise a set, andL�1
bits are used to index a block in a set. While a conventional
set-associative cache matches the tags in parallel, the HR-
cache matches the tags sequentially. The cache is organized
as a conventional direct-mapped cache; thus, the cycle time
for accessing an individual block would be faster than that
of a conventional set-associative cache. Cache blocks are
indexed using two distinct hashing functions, and the cache
is probed in a fixed order using those hash functions. We
call the cache block addressed by the first hash function the
“first block” and the remaining block the “second block.”
If the data is not found in the first block, the second block
is examined. If the data is found in the second block,
the contents of the first and second blocks are exchanged.
The intuition is that by re-allocating the data, successive
references will locate the data quicker, because it will be
found with the first probe. If the data is not found by the
second probe, a miss occurs. The first block is moved to the
second block, since the first block was more likely to have
been more recently referenced than the second block, and
the missing block is placed in the first block. As shown in
later examples, this mechanism does not implement a true
LRU replacement policy.

This process is easier to understand by example. We will
use the same reference stream to illustrate the operation of

each cache organization. The references stream is:

1st reference 010 10
2nd reference 001 10

The addresses are specified in binary, and the tag (the high
three bits) is separated from the set index (the low two
bits) by an underscore (). Using the cache configuration
in Figure 1(a), all of these references map to the same set.

Since the HR-cache uses a conventional direct-mapped
organization, the concept of blocks in a set are represented
by the use of an additional cache index bit to distinguish the
two blocks of the set. Before each example, we assume the
initial cache configuration is such that address 000 10 (at
index two) and 001 10 (at index six) are in the two blocks
of the set, and that 001 10 was more recently referenced
than 000 10.

In the HR-Cache the first hashing function uses a direct-
mapped lookup (formed using the lower-order bits of the
tag, concatenated with the set index), and the second hash-
ing function probes the other block in the set. Thus, fetching
the address 010 10 would first probe index two, then index
six, while fetching 001 10 would first probe index six and
then index two. Figure 1(a) illustrates how the two refer-
ences are processed in the HR-Cache. The fetch of 010 10
would examine index two first, and index six second. Since
a miss occurs, the contents of index two (000 10) are moved
to index six, and 010 10 is loaded into index two. Notice
that block 001 10 is replaced, even though it was more re-
cently referenced than 000 10. A true LRU replacement
strategy would have replaced 000 10. The next reference is
to 001 10, which was just replaced. Index six is examined
first, and index two is examined second. Again, a miss
occurs. The contents of index six are moved to index two,
and 001 10 is loaded into index six.

Cache simulations by Agarwal [2], and our own simula-
tions, show that the Hash-Rehash cache has a higher miss
rate than a two-way set-associative cache with LRU replace-
ment. There are two obstacles that limit the performance or
practicality of the HR-Cache: the higher miss rate and the
need to exchange entire cache lines. In the HR-Cache, the
entire first and second blocks must be exchanged if a refer-
ence is found in the second block. This may be a problem
for caches with large lines. Some implementations use a
128-byte cache line, although the processor only retrieves
four or eight bytes on each fetch. Exchanging such large
cache lines either requires a several cycle exchange opera-
tion, or a design that allows two cache lines to be rapidly
exchanged via a wide cache access. The extra metal and
sense amplifiers required for this wide access would likely
add significantly to both the size and power requirements of
the cache. Furthermore, a special exchange operation could
interfere with the pipelining of normal cache accesses, es-
pecially in multi-ported designs, and would introduce more
bookkeeping for deferred write and fill operations.

The Column-Associative Cache (CA-Cache) of Agarwal
and Pudar [2] improved the miss rate and average access
time of the HR-Cache, but still requires that entire cache
blocks be exchanged. Like the HR-Cache, the CA-Cache,
shown diagrammatically in Figure 1(b), divides the cache
into two banks. Cache blocks are found using two hashing

000_10

001_10

4

5

6

7

010_10

0

1

2

3

000_10

4

5

6

7

Bank 0

Bank 1

0

1

2

3

000_10

0

1

2

3

001_10

4

5

6

72nd

Reference
010_10

Reference
001_10

2nd

MISS MISS

1ST

1ST

(a) Hash-Rehash Cache

010_10

0

1

2

3

000_10

4

5

6

7

✔

000_10

0

1

2

3

001_10

4

5

6

7

Bank 1

Bank 0

2nd

Rehash
Bit

010_10

0

1

2

3

001_10

4

5

6

7

Reference
010_10

Reference
001_10

1ST

Rehash
Bit

MISS MISS

1ST Not
Examined

(b) Column-Associative Cache

MRU

010_10

0

1

2

3

001_10

4

5

6

7

✔000_10

0

1

2

3

001_10

4

5

6

7

✔

Bank 1

Bank 0

2nd

MRU

010_10

0

1

2

3

001_10

4

5

6

7

✔

Reference
010_10

Reference
001_10

2nd

MISS

1ST

1ST

(c) MRU Cache

Figure 1: Cache Organizations

functions. In the CA-Cache, a rehash bit is associated
with each cache block, indicating that the data stored in
that cache block would be found using the second hash
function. The rehash bit is the exclusive-or of the lowest-
order bit in the tag and the bank number. Consider the
process of fetching the addresses 010 10 and 001 10. As
before, 000 10 and 001 10 are already at indices two and
six respectively. When the address 010 10 is fetched, index
two would be examined first, followed by index six. A miss
occurs, the data from index two is moved to index six, and
010 10 is loaded into index two. The address 000 10 at
index six would now be found using the second hashing
function, and the corresponding rehash bit is set. Note that
the more recently referenced block 001 10 was discarded.
Now, address 001 10 is referenced. Index six is examined
first; that block does not contain 001 10, but the rehash
bit has been set, indicating that line two can not contain
001 10. Index two is not examined, and the miss is issued
one cycle earlier than in the case of the HR-Cache. Note
that 000 10 “flips” between the two banks, even though it
is the least recently used cache line.

In the HR-Cache, the replacement policy always re-
places the contents of the second block that is examined.
Our example shows the second block block may have been
more recently referenced than the first block. Now con-
sider the CA-Cache: if a miss occurs and the rehash bit for
the first block is set, then there is no need to look in the
other block for the data. The data will not be found in the
other block since the rehash bit indicates that both the first
block and the other block contain data that are searched for
in the other block during the first cache lookup. Besides
decreasing the number of cache lookups needed when there
is a cache miss, the rehash bit also helps the replacement
policy for the CA-Cache. If the rehash bit is set for the first
block examined then the other block was more recently
used. If the rehash bit is set, the CA-Cache replacement
policy replaces the value in the first block. If the rehash bit
is not set, the contents of the first block are transferred to
the second block, and the fetched data is stored in the first
block. Our detailed example illustrates a situation where
the CA-Cache does not implement a true LRU replacement
algorithm; however, the CA-Cache does have a miss rate
close to that of true LRU replacement.

2.2 Dynamically Ordered Cache Probes

In contrast with the HR-Cache and CA-cache schemes,
other researchers have developed schemes that use a dy-
namic probe ordering and do not rely on special cache
allocation or re-allocation policies. Chang et al [4] pro-
posed a novel organization for a multi-chip 32-way set-
associative cache. Their study, and an earlier study by So
and Rechtschaffen [12], found that most requests reference
the most recently used blocks. Each set of cache blocks
had associated “most recently used” (MRU) information.
When accessing a cache set, the cache provided the block
selected by the MRU information. Concurrently, the tags
from the different chips were gathered and compared; if
the wrong cache item was used, it was detected and the
proper item was provided on the next cycle. This organiza-
tion allowed most references (85%-95%) to complete in a
single cycle, and reduced the cycle time of their multi-chip
implementation by 30-35%.

Kessler et al [8] proposed a similar organization. Rather
than swap the cache locations like the HR-Cache and CA-
Cache, each pair of cache blocks uses an “MRU bit” to
indicate the most recently used block. When searching for
data, the block indicated by the MRU bit is probed first. If
the data is not found, the second block is probed; if the data
is found, the MRU bit is inverted, indicating the second
block is more recently used than the first block. If the data
is not found, the least recently used block, indicated by the
MRU bit, is replaced. The MRU bit is used to implement an
LRU replacement policy, so the MRU-Cache has the same
miss rate as a two-way set-associative cache.

The implementation of MRU two-way associative
caches is shown in Figure 1(c). In that diagram, we show
the MRU bits as check-marks to the side of each cache
block. In practice, pairs of cache lines, such as lines two
and six, share a single MRU bit. When 010 10 is refer-
enced, block six, the most recently referenced block, is
examined first. Since the data is not found, block two is ex-
amined. Again, the tag is not found and the missing data is
fetched from memory and placed in block two. The MRU
bit is set to indicate that block two is now more recent than
block six. On the next reference, block two is examined
first, followed by block six. The MRU bit is updated to
indicate that block six was more recently used.

The design in [8] focused on large, secondary caches,
and the lower cycle time seen by [4] did not apply. In the
design by Kessler et al, the MRU bit must be fetched prior
to accessing the cache contents to determine what cache
line should be examined first since the effective address
is used index the MRU table. This lengthens the cache
access cycle, even if pipelined. Kessler et al felt this cache
organization was appropriate for large secondary caches,
because searches would be infrequent and the additional
overhead for fetching the MRU bit could be speculatively
overlapped with the first level access.

3 The Predictive Sequential Associative Cache
Both the HR-Cache and the CA-Cache require that en-

tire cache lines be exchanged and have a worse miss rate
than a cache with an LRU replacement strategy. In most
first-level cache designs, the MRU-Cache requires a slightly
longer cycle time to access the MRU prediction informa-
tion. Furthermore, both the HR-Cache and MRU-Cache
implementations suffer from excessive searching in certain
situations. For example, assume the address references
used in the previous examples have completed, and the
processor continues requesting the alternating addresses
010 10; 001 10; : : : ; 010 10; 001 10. In the HR-Cache,
address 000 10 will continue to be moved between indices
two and six, and each reference will be a miss; in the CA-
Cache, these references do not result in further misses. In
the MRU-Cache, each reference examines both indices two
and six in the cache, because the pairs of blocks in the
MRU-Cache share an MRU bit. The MRU information
“flip-flops” on each reference, insuring that the next access
requires two cycles.

These problems are addressed by our proposed cache
design, the Predictive Sequential Associative Cache (PSA-
Cache), shown in Figure 2. We separate the mechanism
used to select probe order from the mechanism used to

guide replacement. Each pair of cache blocks uses an MRU
entry to implement LRU replacement. The PSA-Cache has
the same miss rate as the MRU-cache and all other LRU-
replacement caches. We use another table, the steering bit
table (SBT), shown on the left side of Figure 2(a) to guide
data access. When fetching a cache line entry, the effective
address is used to index into the actual cache. Likewise,
a prediction index is used to select a particular steering
bit. As Kessler et al [8] indicated, the steering bits need
to be accessed prior to the cache access. If we use the
effective address to select a steering bit, this may lengthen
the cache access time – arguably, if the effective address
were available earlier, cache accesses would be initiated at
an earlier pipeline stage. However, we do not need to use the
effective fetch address to select a steering bit. We examined
a number of sources for prediction indices, and present
several very accurate sources that can be provided by earlier
pipeline stages, insuring the steering bit is available when
the cache is accessed.

Separating the replacement mechanism from the pre-
diction mechanism offers immediate benefits, even for the
MRU-Cache design proposed by Kessler et al. Consider
an 8KByte cache split into two banks with 128 pairs of 32
byte lines. The MRU-Cache would use a 128-bit table to
indicate the most recently used block in each pair. The
PSA-Cache also uses a 128-bit table to implement an LRU
replacement policy; however, a much larger table can be
used to determine the block that should be probed first when
searching for an address. Each entry “steers” references to
the appropriate cache block. If a 256-entrysteering bit table
(SBT) was used, the “flip-flop” example would encounter
no penalty in the PSA-cache if different steering bit entries
are used. In certain configurations, it is also useful to use a
rehash bit in the PSA-Cache. As in the CA-Cache, we use
this bit to avoid examining another line when that line can
not possibly contain the requested address, but we do not
use the bit to guide the replacement policy, since the MRU
bit provides more accurate information.

Figure 2 shows the operation of the PSA-Cache, indi-
cating both the MRU and rehash bits for each block. The
rehash bit for 000 10 is clear because the data stored in the
matching block in the other bank is in its “proper” location
(i.e., the location we would examine in a direct-mapped
cache). In other words, the third bit of 001 10 stored in
line 6 is a “1”; and don’t need to examine line 6 when
searching for tags where the third bit is a zero. Figure 2(a)
shows the reference to address 010 10. Prior to the access,
a prediction source was mapped to the third entry in the
steering bit table. That entry indicates the first block of the
set, i.e., index two, should be probed first. Index two is
examined first, and the rehash bit for line six is read con-
currently. Index two does not contain 010 10. The rehash
bit indicates the contents of block six is not a rehashed
entry, and there is no point in examining index six. The
referenced address is not in the cache, and is fetched from
memory. The MRU bit indicates that the block at index six
was more recently used than that at index two, so the con-
tents of index two are replaced with 010 10. As the block
is replaced, the steering bit used to locate 010 10 is trained,
indicating that bank zero of the set should be probed first on
the next reference to 010 10. The prediction source selects
the seventh steering bit when 001 10 is referenced. The

0

1

0

0

1

0

1

1

Prediction Address

Steering Bit Table

010_10

0

1

2

3

001_10

4

5

6

7

✔000_10

0

1

2

3

001_10

4

5

6

7

✔

Bank 1

Bank 0

Reference
010_10

MISS

1ST

MRU Rehash

Not
Examined

RehashMRU

0

1

0

0

1

0

1

1

Pr
ed

ic
tio

n
A

dd
re

ss

Steering Bit Table

010_10

0

1

2

3

001_10

4

5

6

7

✔

Bank 1

Bank 0

Steering
Bit Is

Updated

010_10

0

1

2

3

001_10

4

5

6

7

✔

Reference
001_10

1ST

RehashRehash MRUMRU

(a) First Reference in PSA Cache (b) Second Reference in PSA Cache

Figure 2: Diagram of the PSA Cache

IF DE READ EXEC MEM

Register Numbers,
Relative Offset,
Instruction Properties

Register Contents

Effective Address

Figure 3: Pipeline Stages Showing When Prediction
Sources Are Available

requested address is found at index six, and the MRU bit
is changed to indicate that index six is more recently used
than index two. If the processor continues requesting the
alternating addresses 010 10; 001 10; : : : ; 010 10; 001 10,
each reference will be found in the first probe.

In summary, we use three data structures to implement
three cache mechanisms. The Steering Bit Table deter-
mines which block in a set should be probed first, increasing
the number of references found during the first probe. The
rehash bits reduce the number of probes, allowing misses
to be started earlier or simply reducing the time the cache
is busy, which is important for architectures that issue mul-
tiple loads per cycle. The MRU bits provide a true LRU
replacement policy, improving the overall miss rate.

3.1 Prediction Sources
To illustrate some of the specific prediction sources

available, Figure 3 shows a simple pipeline and the in-
formation available at each stage. We assume a load-store
architecture with register-relative addressing – all memory
references are of the form M [Rb + Offset]. At instruction
fetch (4 cycles before the memory access), we know the
instruction address. Following decode (3 cycles before the
memory access), we know the register number (b) and the
address offset (Offset). After the register file has been read
(1 cycle prior to the memory access), we know the con-
tents of Rb, and after the execution stage (right at memory
access time), we know the effective address, Rb + Offset.

In addition we can use the same information from prior in-
structions. We examined the following prediction sources:

1. Effective Address. The effective address was the most
accurate prediction source; however, there may not be
enough time in some designs to compute the effective
address and index the steering bits before the cache ac-
cess completes. When using the effective address, the
PSA-Cache is a simple extension to the MRU-Cache
with improved performance from a larger steering bit
table.

2. Register Contents and Offset. Computing the effective
address involves a full add. Functions without carry
propagation take less time in some designs, thus mak-
ing the results available in time to index the steering
bit table before the cache access completes. We used
the exclusive-or of the contents and offset to form a
prediction address.

3. Register Number and Offset. We can combine the
register number and the offset several cycles before
the cache access. In general, this provides good per-
formance with small SBTs, but the performance im-
provements dropped off for larger tables. There were
three reasons. We were using the register number and
not the register contents. Register assignments, par-
ticularly at procedure calls, were not reflected in the
prediction information. Also, our target architecture
has 32 integer registers, and most values for Offset
were less than 96; some combinations of the register
number and offset did not spread references enough
to make use of the entire SBT. Lastly, some registers
were used more than others; in most programs,� 40%
of all references were relative to the stack pointer.
We included the stack depth to reduce interference
between register usage in different procedures. We
further improved this by including the address of the
current procedure. Some of this information is already
retained by many machines to implement a return-
address stack [7], a branch prediction mechanism used
to predict procedure return addresses. We also tried
separate steering bit tables for certain registers.

Offset

<5>

Rb

<5>

SBT Index

Offset

<5><5>
b

SBT Index

(a) SBT Index for XOR-5-5 (b) SBT Index for RegNum

Figure 4: Combining Prediction Sources for Steering Bit
Table Index

4. Instruction and Previous References. We also used
the address of the instruction issuing the reference and
variants of the previous cache reference. These pre-
diction sources were less effective than the others, and
are not discussed further.

We examine four configurations of the PSA-Cache in
more detail: the “Eff”, “XOR-5-5”, “RegNum” and “Proc”
caches. We simulated an 8KByte cache with 32 byte lines.
Each cache reference is of the form M [Rb + offset], and
the cache contains 256 32-byte lines. The lines are divided
into 128 sets. All the cache models use (Rb + offset) >>
5, or Rb + offset shifted right five bits, to index into the
MRU table. The SBT entry determines the first bank to be
examined. Each cache uses a 1024-entry SBT table.

The “Eff” configuration uses (Rb + offset) � 5 to in-
dex both the cache and the SBT table. This configura-
tion illustrates the benefits of changing the MRU-Cache
to use a larger steering bit table. Figure 4 illustrates how
the indices for XOR-5-5 and RegNum are formed. The
“XOR-5-5” configuration uses (Rb � offset) � 5), where
� is a bit-wise exclusive or, to index the SBT. In some
implementations, there may be enough time to compute
the exclusive-or and index the small SBT table before the
effective address is computed, while the arithmetic sum
(Rb + offset) � 5 would take longer to complete. This
is similar in flavour to the prediction method of Austin et
al [3]. The “RegNum” model forms the prediction address
by concatenating the register number and the lower five bits
of the offset ((b� 5)j((offset� 5)&0x1F)). The “Proc”
configuration extends “RegNum” using an exclusive or of
the destination address from the previous procedure call.
Steering-bits resemble a single-bit branch prediction table;
each entry contains a single bit and has no associated tag.
Thus, for an 8KByte cache with 32 byte lines, a 1024-entry
Steering Bit Table (SBT) represents � 1% overhead. The
actual overhead depends on the mechanism and design of
the SBT.

4 Experimental Design and Performance Metrics
We compared the accuracy of the different prediction

sources and the performance of the different cache organi-
zations using trace-driven simulation. We collected infor-
mation from 26 C and Fortran programs. We instrumented
the programs from the SPEC92 benchmark suite and other
programs, including many from the Perfect Club. We used
ATOM [13] to instrument the programs. Due to the struc-
ture of ATOM, we did not need to record traces and traced
the full execution of each program. The programs were
compiled on a DEC 3000-400 using the Alpha AXP-21064

Program # of Instructions % of Loads % of Stores
APS 1,490,454,770 24.70 11.80
CSS 379,319,722 31.76 9.07
LGS 955,807,677 19.95 10.51
LWS 14,183,394,882 22.96 9.47
NAS 3,603,798,937 22.68 9.07
OCS 5,187,329,629 21.67 21.81
TFS 1,694,450,064 26.55 11.38
TIS 1,722,430,820 26.91 13.11
WSS 5,422,412,141 22.66 8.89
alvinn 5,240,969,586 26.95 9.30
dodoc 1,149,864,756 29.32 7.02
ear 17,005,801,014 22.09 12.67
fpppp 4,333,190,877 35.31 12.64
hydro2d 5,682,546,752 24.22 8.30
mdljsp2 3,343,833,266 22.53 6.52
nasa7 6,128,388,651 28.86 11.12
ora 6,036,097,925 22.26 9.75
spice 16,148,172,565 32.61 4.08
su2cor 4,776,762,363 22.39 10.21
wave5 3,554,909,341 21.33 13.39
compress 92,629,658 26.38 9.47
eqntott 1,810,540,418 12.77 1.29
espresso 513,008,174 21.57 5.08
gcc 143,737,915 23.89 11.74
li 1,355,059,387 28.09 14.65
sc 1,450,134,411 13.45 5.75

Table 1: Measured attributes of traced programs showing
the number of instructions executed during execution and
the percentage of loads and stores.

processor and either the DEC C or FORTRAN compilers.
Most programs were compiled using the standard OSF/1
V1.2 operating system. All programs were compiled with
standard optimization (-O).

In this paper, we are primarily concerned with first-level
data cache references, because data references are difficult
to predict, and first level caches must be both fast and
have low miss rates. Furthermore, instruction cache misses
can be reduced using a number of software techniques [9,
10] and instruction references are usually very predictable.
Thus, even the “Eff” technique described below can be
used with instruction caches. We examined an 8 KByte
cache with 32-byte cache lines. We assume the cache
uses a write-around or no-store-allocate write policy, since
earlier work by Jouppi [6] found this to be more effective
than a fetch-on-write or store-allocate policy. The study
by Jouppi found an overall lower miss rate using write-
around. Our simulations show a slightly higher miss rate,
particularly for writes.

5 Trace-Driven Performance Comparison

The cache miss rate is normally used to compare the
performance of different cache organizations. We have
seen that the access time for direct-mapped caches and tra-
ditional set-associative caches differ by as much as 50%,
and this increased access time is not reflected in the miss
rate. The traditional two-way set-associative cache, the

MRU-Cache, and the PSA-Cache all use an LRU replace-
ment algorithm, and have identical miss rates. The PSA-
Cache and MRU-Cache may probe the cache several times
to achieve that same miss rate, and a “probe rate” may be
a more appropriate metric. When comparing the MRU-
Cache and PSA-Cache to the HR-Cache and CA-Cache,
we must also include the differences in miss rates. Finally,
when comparing any of these methods to a two-way as-
sociative cache, we should include the difference in cycle
time between an associative cache and the direct mapped
caches used to implement the sequential associative caches.

We decided to compare the techniques using a timing
model that separates the latency encountered by the pipeline
and the time the cache is busy. Agarwal [2] used a simple
timing model to demonstrate the performance of the CA-
Cache. His model provides an average access time and can
be used to compare all cache organizations that have the
same cycle time. However, Agarwal’s timing model did
not distinguish between loads and stores. Conceptually, a
processor pipeline must wait until a load is resolved, but
need not wait for a store to finish – in practice, several
loads and stores may be waiting to be resolved. Even if the
processor is able to continue to issue loads after a miss, the
pending miss may interfere with the loads that hit in the
cache.

5.1 Performance Metrics

We define the cache access latency to be the average
time the processor must wait for a memory reference to be
resolved. Similarly, the average cache occupancy is the
time the cache is busy for each reference. In general, a
smaller access latency and smaller occupancy is preferred.
If the latency is high, the processor must stall, waiting for
data. If the occupancy is high, there is a greater chance
outstanding references will conflict with newly issued ref-
erences. As we show later, most of the cache designs
have the same access latency, and are differentiated by
their cache occupancy. It is difficult to precisely quantify
the performance resulting from a particular access latency
and occupancy, because system performance depends on
instruction scheduling, the number of out-standing refer-
ences, the depth of write-buffers and a number of other
features determined by a particular system. However, la-
tency and occupancy, like miss rates, can be used to narrow
the design space prior to system-level simulation.

Table 2 defines certain parameters used in our timing
model, and Table 3 shows how we calculate access latency
and occupancy. We record different hit rates for loads and
stores because loads and stores are treated differently, al-
though that distinction is not made explicit in the timing
equations to simplify the notation. The sequential associa-
tive caches further divide the hit rate H into hits that are
detected on the first cache probe, Hf , and those detected
on the second probe Hs. The CA-Cache and PSA-Cache
use the rehash bit to avoid a second cache probe for some
cache misses. In the sequential caches, the miss rate M
is divided into Mf , denoting the misses detected on the
first cache probe, and Ms denoting the misses detected on
the second cache probe. The HR-Cache and MRU-Cache
always probe the cache twice on misses, and Mf is always
zero for these caches.

TP Time to probe the cache following the first probe, in cycles. In
some designs, this may be larger than one cycle, but we assume
it is one cycle.

TM Penalty for cache misses, in cycles. This includes the time to
initiate the cache miss and receive the data.

TR Time to refill a cache line, in cycles. This is the time the cache
is busy when a cache line is refilled. We assume a 32-byte
cache line can be refilled in two cycles.

TNS Extra time needed if misses can not be squashed. The “Con-
servative” timing model assumes TNS = TP , while the “Op-
timistic” timing model assumes TNS = 0.

TS Time needed to swap cache lines in the HR-Cache & CA-
Cache.

Table 2: Definition of Terms Used in Timing Equations

Cache Access Latency
Cache Occupancy Time

Direct & Ld
H + (1+ TM)M

H + (1+ TR)M

2-Way St
0
H

HR Ld
Hf+(1+TP)Hs+(1+TM)Mf+(1+TNS+TM)Ms

Hf +(1+TP +TS)Hs+(1+TR)Mf +(1+TP +

TS + TR)Ms

& CA St
0
Hf + (1+ TP + TS)Hs +Mf + (1+ TP)Ms

MRU Ld
Hf+(1+TP)Hs+(1+TM)Mf+(1+TNS+TM)Ms

Hf+(1+TP)Hs+(1+TR)Mf+(1+TP +TR)Ms

& PSA St
0
Hf + (1+ TP)Hs +Mf + (1+ TP)Ms

Table 3: Timing Equations Used To Compare Performance.
In the HR-Cache and MRU-Cache, all misses take two
cycles, meaning that Mf = 0 and Ms = M . The raw
cache access time is a single cycle. We assume TP = 1
and TS = 4TR � 2.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

D
ire

ct

2-
W

ay

R
eh

as
h

C
A

C

M
R

U E
ff

X
O

R
-5

-5

R
eg

N
um

P
ro

c

A
ve

ra
ge

 C
yc

le
s

P
er

 R
ef

er
en

ce Latency (Optimistic)
Latency (Conservative)
Occupancy

Figure 5: Latency and Occupancy for Conservative and
Optimistic Configurations. The occupancy is the same
for both the Conservative and Optimistic configurations.
Parameters are TM = 10; TR = 2; TS = 4TR�2; TP = 1.
Cache size is 8KBytes, with 32 byte lines. The values
shown are the arithmetic means averaged over all programs.

The latency for a cache miss, or miss penalty, is TM cy-
cles. This includes the time to request the data from lower
levels of the memory hierarchy, move it on-chip and load it
into the cache. In some cases, a miss can be initiated spec-
ulatively and “squashed” in a later cycle. This reduces the
latency for a miss, because the miss can be initiated a cycle
earlier. Our “Conservative” cache timing model does not
initiate misses speculatively, while our “Optimistic” timing
model assumes a cache miss can be speculatively initiated
and squashed one cycle later. We use the term TNS (“non-
squashing”) to reflect the additional time spent servicing
misses if the miss can not be speculatively initiated.

While the latency determines how long the processor
must wait for references to be resolved, the occupancy
determines how long the cache is busy. Although the miss
penalty isTM cycles, the cache is only busy when the cache
lines are being reloaded, or TR cycles. The HR-Cache and
CA-Cache exchange cache lines to improve the average
access latency and we assume it takes TS cycles to swap
two cache lines. Agarwal’s timing model [2] combines
the notion of latency and occupancy, and argued that TS
should be a single cycle. We feel a larger value is more
reasonable, particularly for large cache lines, such as 32
or 128 bytes. There would be increased wiring density
needed to exchange two complete cache lines in a single
cycle, possibly increasing the cycle time. If we can reload
half a cache line in a single cycle (i.e., TR = 2), it could
be argued that we could exchange a cache line in 4TR � 2
cycles, because two half-lines have already been read by
the time we determine the lines must be swapped.

Table 3 shows the timing model. Stores do not stall the
processor, and have a latency of zero. Consider the load
latency for the CA-Cache. If the first probe results in a hit,
a cycle was spent. If the second probe is a hit, the pipeline
was stalled two cycles. At this point, the cache lines must
be swapped, but the pipeline does not wait for this to finish.
However, the cache lines must be swapped before the next
cache reference begins. If a reference misses in the first
bank, and the rehash bit indicates that it can not hit in the
second bank, the pipeline stalls for 1 + TM cycles. If the
second bank must be examined, the processor stalls for
1 + TM cycles, and may stall for an additional TNS cycles
if the miss can not be started early. In the CA-Cache, the
cache is occupied while the cache is probed, the cache lines
are swapped or cache lines are refilled.

5.2 Performance Comparison
The graph in Figure 5 summarizes the latency and oc-

cupancy, while Tables 4(a), 4(b) and 5 provide more de-
tailed information. In each configuration, the cache miss
penalty is ten cycles (TM = 10), it takes two issues to
refill a line (TR = 2) and six cycles to swap cache lines
(TS = 4TR � 2). Each cache is 8 KBytes with 32 byte
lines. The latency is given for both the conservative tim-
ing model, where cache misses can not be speculatively
initiated, and the optimistic model, where they can. The
occupancy does not depend on the ability to speculatively
initiate cache misses, and is the same for both timing mod-
els. Latency and occupancy are measured in average cycles
per reference. Although Tables 4(b) and 4(a) show the la-
tency and occupancy can be less than one, the averages
shown in Figure 5 are not, and the vertical axis is bounded

by one.
In general, the latency for the associative caches are

� 5 � 10% smaller than that of the direct mapped cache;
exact values can be found in the tables. It is important
to understand that this paper is not comparing the effec-
tiveness of direct vs. associative caches; we assume that
associative caches are desired, and an efficient implementa-
tion technique is needed. In our performance comparison,
we examined caches with a small miss penalty, TM = 10,
because we feel the PSA-Cache is appropriate for first level
caches. As the miss penalty increases, all two-way asso-
ciative caches further reduce the latency, due to the reduced
miss rate. The access time for a two-way associative cache
depends on the cache size and a number of other factors.
As mentioned, the access time for a two-way associative
cache is 1.51, 1.46 and 1.40 times longer than the access
time for a direct mapped cache for 8KB, 16KB and 32KB
caches, respectively. It is incorrect to simply scale the cy-
cles per memory reference show in Tables 4(b), 4(a) and 5
by these values, since the data cache access time typically
limits the system cycle time and has a much broader impact
on system performance. For example, assume we design a
system using an 8KByte cache with a 3 nanosecond clock.
Table 4(b) would imply that a two-way set associative cache
would lower the average cycles per memory reference by
10-15%, by reducing the miss rate. However, such a cache
would also be 1.51 times slower, with a 4.53ns cycle time.
By comparison, the sequential cache configurations shown
in Table 4(b) maintain the same 3ns cycle time, and reduce
the average cycles per reference.

The latencies for most of the two-way associative caches
are almost identical; this is not surprising, since the equa-
tions for latency in Table 3 are identical for the HR, CA,
MRU and PSA caches. Any difference in the latency arises
from different hit rates, and the fraction of references re-
solved on the first or second cycle. Only the HR-Cache
has a notably higher miss rate. Table 4(b) demonstrates
several points also seen in the remaining tables. First, for
some programs (swm256 and tomcatv), two-way set-
associativity increases the miss rate. For the remaining
programs, the ideal two-way set associative cache has the
best performance, followed by the PSA-Cache using the
“Eff” prediction address; however, this configuration sim-
ply extends the MRU-Cache to use a larger table of pre-
diction bits, and it may not be possible to use the effective
address to index a table of steering bits and access the data
in a single cycle. However, the “Eff” column demonstrates
how to improve the MRU-Cache design of Kessler et al for
the domains considered in [8]. The next most effective
configuration is “XOR-5-5,” followed by the CA-Cache.
The “XOR-5-5” configuration requires an exclusive-or of
the contents of the register and offset before the SBT is ac-
cessed; this may not be possible in some designs. However,
the “Proc” design provides almost equal performance with
considerably more flexible timing constraints. The pre-
diction sources for the “Proc” configuration are available
immediately after the instruction is decoded.

In Table 5, the direct and traditional two-way cache
have the lowest occupancy; this is understandable, because
all cache operations either take one cycle (hit) or 1 + TR
cycles (miss). In the CA-Cache and PSA-Cache, rehash
bits are used to avoid examining the second half of the

Program Direct 2-Way Rehash CAC MRU Eff Xor Reg Proc

Perfect Club Programs

APS 1.24 1.13 1.37 1.17 1.20 1.16 1.20 1.23 1.22
CSS 1.44 1.17 1.45 1.24 1.25 1.19 1.25 1.29 1.26
LGS 0.88 0.81 0.88 0.84 0.83 0.82 0.86 0.89 0.87
LWS 1.11 0.91 1.15 0.96 0.96 0.92 0.98 0.99 0.99
NAS 1.43 1.20 1.46 1.28 1.27 1.23 1.25 1.26 1.25
OCS 1.36 1.30 1.43 1.37 1.37 1.33 1.35 1.37 1.37
SDS 1.01 1.04 1.21 1.03 1.07 1.05 1.11 1.12 1.12
TFS 1.30 1.25 1.35 1.29 1.28 1.27 1.31 1.31 1.32
TIS 1.54 1.30 1.83 1.36 1.42 1.32 1.38 1.51 1.54
WSS 1.48 1.38 1.59 1.43 1.45 1.41 1.49 1.53 1.55

Mean 1.28 1.15 1.37 1.19 1.21 1.17 1.22 1.25 1.25
StdDev 0.22 0.18 0.26 0.19 0.20 0.19 0.19 0.20 0.22

SPEC Floating Point Programs

alvinn 1.30 1.22 1.38 1.24 1.25 1.23 1.23 1.24 1.24
doduc 1.70 1.37 1.80 1.44 1.47 1.40 1.44 1.48 1.45
ear 0.88 0.79 1.11 0.81 0.83 0.79 0.80 0.81 0.81
fpppp 1.23 0.90 1.20 0.95 0.97 0.91 1.04 1.07 1.03
hydro2d 2.12 1.96 2.24 2.07 2.04 2.00 2.09 2.07 2.11
mdljsp2 1.14 1.01 1.32 1.05 1.08 1.02 1.04 1.07 1.07
nasa7 3.86 3.69 4.11 3.91 3.90 3.81 3.88 3.89 3.90
ora 0.96 0.70 0.80 0.72 0.72 0.70 0.74 0.75 0.72
spice 3.58 3.28 3.86 3.48 3.49 3.39 3.46 3.54 3.54
su2cor 4.18 4.14 4.71 4.31 4.36 4.24 4.30 4.37 4.35
swm256 2.52 3.03 5.75 3.03 3.40 3.10 3.15 3.22 3.22
tomcatv 3.58 3.83 6.43 4.12 4.25 3.89 3.99 4.06 4.11
wave5 1.30 1.15 1.67 1.18 1.24 1.17 1.19 1.28 1.27

Mean 2.18 2.08 2.80 2.18 2.23 2.13 2.18 2.22 2.22
StdDev 1.22 1.31 1.93 1.38 1.42 1.35 1.36 1.38 1.39

SPEC Integer Programs

compress 2.22 1.86 2.10 2.00 1.96 1.91 1.91 1.96 1.94
eqntott 1.49 1.33 1.53 1.38 1.38 1.35 1.36 1.38 1.37
espresso 1.36 1.25 1.38 1.29 1.30 1.27 1.27 1.33 1.32
gcc 1.32 1.08 1.37 1.15 1.15 1.10 1.15 1.21 1.18
li 1.34 0.99 1.28 1.05 1.06 1.01 1.07 1.15 1.11
sc 2.16 1.99 2.38 2.10 2.09 2.04 2.05 2.11 2.09

Mean 1.65 1.41 1.67 1.49 1.49 1.44 1.47 1.53 1.50
StdDev 0.43 0.41 0.45 0.44 0.43 0.43 0.41 0.41 0.41

Overall Statistics

Mean 1.76 1.62 2.07 1.70 1.73 1.66 1.70 1.74 1.73
StdDev 0.92 0.98 1.45 1.04 1.06 1.01 1.02 1.03 1.04

Program Direct 2-Way Rehash CAC MRU Eff Xor Reg Proc

Perfect Club Programs

APS 1.24 1.13 1.31 1.13 1.17 1.13 1.17 1.20 1.19
CSS 1.44 1.17 1.39 1.21 1.23 1.18 1.23 1.27 1.24
LGS 0.88 0.81 0.86 0.83 0.82 0.81 0.86 0.89 0.87
LWS 1.11 0.91 1.11 0.94 0.95 0.91 0.97 0.98 0.98
NAS 1.43 1.20 1.39 1.24 1.24 1.20 1.22 1.23 1.22
OCS 1.36 1.30 1.35 1.32 1.31 1.30 1.31 1.33 1.33
SDS 1.01 1.04 1.17 1.02 1.06 1.04 1.10 1.11 1.11
TFS 1.30 1.25 1.29 1.26 1.26 1.25 1.29 1.29 1.30
TIS 1.54 1.30 1.73 1.32 1.40 1.30 1.36 1.49 1.52
WSS 1.48 1.38 1.51 1.39 1.42 1.39 1.46 1.50 1.52

Mean 1.28 1.15 1.31 1.17 1.19 1.15 1.20 1.23 1.23
StdDev 0.22 0.18 0.23 0.18 0.19 0.18 0.18 0.20 0.21

SPEC Floating Point Programs

alvinn 1.30 1.22 1.33 1.22 1.24 1.22 1.22 1.23 1.23
doduc 1.70 1.37 1.71 1.41 1.45 1.38 1.42 1.45 1.43
ear 0.88 0.79 1.07 0.80 0.83 0.79 0.80 0.81 0.81
fpppp 1.23 0.90 1.16 0.94 0.96 0.90 1.03 1.07 1.02
hydro2d 2.12 1.96 2.11 2.00 1.99 1.97 2.05 2.02 2.05
mdljsp2 1.14 1.01 1.27 1.03 1.06 1.02 1.03 1.06 1.06
nasa7 3.86 3.69 3.80 3.72 3.78 3.70 3.76 3.75 3.76
ora 0.96 0.70 0.79 0.72 0.72 0.70 0.74 0.75 0.72
spice 3.58 3.28 3.60 3.33 3.38 3.29 3.35 3.43 3.42
su2cor 4.18 4.14 4.34 4.13 4.18 4.14 4.19 4.22 4.20
swm256 2.52 3.03 5.29 2.92 3.32 3.03 3.08 3.14 3.14
tomcatv 3.58 3.83 5.92 3.95 4.12 3.83 3.89 3.94 3.98
wave5 1.30 1.15 1.57 1.15 1.22 1.15 1.17 1.26 1.25

Mean 2.18 2.08 2.61 2.10 2.17 2.09 2.13 2.16 2.16
StdDev 1.22 1.31 1.75 1.31 1.36 1.31 1.32 1.32 1.33

SPEC Integer Programs

compress 2.22 1.86 1.98 1.92 1.90 1.86 1.86 1.91 1.89
eqntott 1.49 1.33 1.48 1.35 1.36 1.33 1.34 1.36 1.35
espresso 1.36 1.25 1.33 1.26 1.28 1.25 1.25 1.31 1.30
gcc 1.32 1.08 1.31 1.12 1.13 1.08 1.13 1.19 1.16
li 1.34 0.99 1.23 1.03 1.05 0.99 1.06 1.13 1.09
sc 2.16 1.99 2.23 2.02 2.03 1.99 2.00 2.06 2.03

Mean 1.65 1.41 1.59 1.45 1.46 1.42 1.44 1.49 1.47
StdDev 0.43 0.41 0.41 0.42 0.41 0.41 0.39 0.39 0.39

Overall Statistics

Mean 1.76 1.62 1.95 1.64 1.68 1.63 1.67 1.70 1.69
StdDev 0.92 0.98 1.32 0.98 1.02 0.98 0.98 0.99 0.99

(a) Cache Access Latency for Optimistic Timing Model
with TM = 10 Cycles, TR = 2 Cycles, TS = 4TR � 2
Cycles.

(b) Cache Access Latency for Conservative Timing
Model with TM = 10 Cycles, TR = 2 Cycles, TS =
4TR � 2 Cycles.

Table 4: Conservative and Optimistic Latency For Different Programs

cache in some situations. Agarwal [2] used the rehash bit
to reduce the latency by initiating misses one cycle earlier.
In our “Optimistic” timing model, the rehash bit has no
effect on latency because misses are always initiated early,
but rehash bits influence occupancy in all configurations.
There is still a notable difference between the “Optimistic”
and “Conservative” timing model, even when the rehash
bits are used, indicating that the speculative miss initiation
is useful even when the rehash bit can not avoid probing
the cache a second time.

We feel that occupancy is an importantmetric, because it
determines how quickly memory references, both loads and
stores, can be issued without contention in the cache. Oc-
cupancy directly affects cache latency, but is highly depen-
dent on machine and system architectures and instruction
scheduling.

6 Conclusions

In this paper, we have described the Predictive Sequen-
tial Associative Cache as a mechanism to implement two-
way associative on-chip caches. We proposed two metrics,
latency and occupancy, suitable for comparing associative
cache designs. Variants of the PSA-Cache have better per-
formance, in terms of latency and occupancy, than other
proposed designs.

We strongly feel the PSA-Cache variants are easier to
implement than designs that exchange cache lines, particu-
larly for larger cache lines. Our simultation study showed
that all the techniques had comparable latency, with vari-
ants of the PSA-Cache having the lowest latency. The
PSA-Cache also had the lowest occupancy. The “Eff” de-
sign has the best performance, but the “XOR-5-5” may be
easier to implement and have a shorter access time.

There are a number of other design criteria not imme-

Program Direct 2-Way Rehash CAC MRU Eff Xor Reg Proc

Perfect Club Programs

APS 1.11 1.09 1.78 1.54 1.18 1.14 1.19 1.25 1.23
CSS 1.13 1.08 1.80 1.52 1.17 1.11 1.18 1.23 1.20
LGS 1.05 1.03 1.33 1.22 1.09 1.06 1.14 1.18 1.14
LWS 1.08 1.04 1.58 1.36 1.11 1.06 1.17 1.18 1.17
NAS 1.14 1.10 1.82 1.55 1.19 1.14 1.19 1.20 1.17
OCS 1.17 1.16 2.00 1.71 1.31 1.22 1.27 1.31 1.32
SDS 1.06 1.06 1.44 1.22 1.11 1.08 1.17 1.19 1.20
TFS 1.12 1.11 1.70 1.48 1.20 1.18 1.25 1.26 1.27
TIS 1.17 1.13 2.20 1.66 1.25 1.15 1.24 1.39 1.41
WSS 1.15 1.13 1.93 1.61 1.24 1.18 1.30 1.35 1.37

Mean 1.12 1.09 1.76 1.49 1.19 1.13 1.21 1.25 1.25
StdDev 0.05 0.04 0.26 0.17 0.07 0.05 0.05 0.07 0.09

SPEC Floating Point Programs

alvinn 1.11 1.09 1.62 1.37 1.13 1.11 1.11 1.13 1.12
doduc 1.18 1.11 2.19 1.75 1.26 1.17 1.23 1.27 1.23
ear 1.05 1.03 1.52 1.22 1.10 1.04 1.06 1.08 1.07
fpppp 1.10 1.03 1.73 1.46 1.15 1.07 1.23 1.28 1.23
hydro2d 1.28 1.24 2.50 1.97 1.38 1.31 1.45 1.43 1.46
mdljsp2 1.07 1.05 1.56 1.27 1.12 1.06 1.08 1.11 1.10
nasa7 1.63 1.59 4.24 3.37 1.86 1.75 1.84 1.85 1.85
ora 1.05 1.00 1.28 1.18 1.03 1.00 1.06 1.08 1.02
spice 1.54 1.48 3.80 2.99 1.70 1.60 1.67 1.76 1.75
su2cor 1.70 1.69 4.70 3.42 2.05 1.91 1.98 2.07 2.04
swm256 1.36 1.46 5.41 2.55 1.94 1.56 1.65 1.73 1.73
tomcatv 1.56 1.61 5.92 3.14 2.16 1.71 1.84 1.91 1.96
wave5 1.14 1.11 2.23 1.65 1.30 1.20 1.24 1.35 1.34

Mean 1.29 1.27 2.98 2.10 1.48 1.35 1.42 1.46 1.45
StdDev 0.24 0.26 1.62 0.87 0.41 0.32 0.34 0.35 0.36

SPEC Integer Programs

compress 1.30 1.22 2.38 2.05 1.34 1.28 1.28 1.35 1.32
eqntott 1.12 1.08 1.63 1.41 1.14 1.11 1.13 1.15 1.13
espresso 1.11 1.09 1.60 1.41 1.16 1.12 1.13 1.20 1.18
gcc 1.13 1.08 1.87 1.55 1.20 1.13 1.21 1.29 1.24
li 1.14 1.07 1.83 1.53 1.17 1.10 1.20 1.31 1.26
sc 1.29 1.26 2.68 2.09 1.44 1.38 1.40 1.49 1.45

Mean 1.18 1.13 2.00 1.67 1.24 1.19 1.22 1.30 1.27
StdDev 0.09 0.08 0.44 0.31 0.12 0.12 0.10 0.12 0.11

Overall Statistics

Mean 1.21 1.18 2.35 1.80 1.33 1.24 1.31 1.36 1.34
StdDev 0.18 0.19 1.23 0.66 0.31 0.24 0.25 0.26 0.27

Table 5: Average Cache Occupancy withTM = 10 Cycles,
TR = 2 Cycles, TS = 4TR � 2 Cycles. The Cache Occu-
pancy is the same for the the Conservative (TNS = 1) and
Optimistic (TNS = 0) models.

diately evident from our performance metrics. First, the
PSA-Cache may have fewer power requirements than other
caches since a single bank is probed. Furthermore, since the
PSA-Cache is divided into two banks that can be operated
independently, it may be possible to support multiple refer-
ences without dual-porting the banks. A similar argument
can be made for the CA-Cache, but it would require exten-
sive book-keeping to maintain correctness while blocks are
exchanged. Lastly, the PSA-Cache mechanism may also be
appropriate for larger, secondary caches directly controlled
by the processor. The Steering Bit Table can be small, and
implemented on the processor, while the MRU Table, cache
tags and data can be implemented off-chip. In the future,
we hope to apply prediction sources to skewed-associative
caches [11].

Acknowledgements
Brad Calder was supported by an ARPA Fellowship in High Perfor-

mance Computing administered by the Institute for Advanced Computer
Studies, University of Maryland. This work was funded in part by NSF
grant No. ASC-9217394, NSF grant No. CCR-9404669, ARPA contract
ARMY DABT63-94-C-0029 and a software and hardware grant from
Digital Equipment Corporation.

References
[1] Anant Agarwal, John Hennesy, and Mark Horowitz. Cache perfor-

mance of operating systems and multiprogramming. ACM Transac-
tions on Computer Systems, 6:393–431, November 1988.

[2] Anant Agarwal and Steven D. Pudar. Column-associative caches:
A technique for reducing the miss rate of direct mapped caches. In
20th Annual International Symposium on Computer Architecture,
SIGARCH Newsletter, pages 179–190. IEEE, 1993.

[3] Todd M. Austin, Dionisios N. Pnevmatikatos, and Gurindar S.
Sohi. Skewed associativity enhances performance predictability. In
22nd Annual International Symposium on Computer Architecture,
SIGARCH Newsletter, pages 369–380. IEEE, 1995.

[4] J. H. Chang, H. Chao, and K. So. Cache design of a sub-micron
CMOS System/370. In 14th Annual International Symposium
on Computer Architecture, SIGARCH Newsletter, pages 208–213.
IEEE, June 1987.

[5] Mark Hill. A case for direct-mapped caches. IEEE Computer,
21(12):25–40, December 1988.

[6] Norm Jouppi. Cache write policies and performance. In 20th An-
nual InternationalSymposiumon ComputerArchitecture, SIGARCH
Newsletter, pages 191–201. IEEE, May 1993.

[7] David R. Kaeli and Philip G. Emma. Branch history table prediction
of moving target branches due to subroutine returns. In 18th An-
nual InternationalSymposiumon ComputerArchitecture, SIGARCH
Newsletter, pages 34–42. ACM, May 1991.

[8] R. R. Kessler, Richard Jooss, Alvin Lebeck, and Mark D. Hill. Inex-
pensive implementations of set-associativity. In 16th Annual Interna-
tional Symposium on Computer Architecture, SIGARCH Newsletter.
IEEE, May 1989.

[9] Scott McFarling. Program optimization for instruction caches. In
Proceedings of the 3rd Symposium on Architectural Support for
Programming Languages and Operating Systems, pages 183–191.
ACM, 1988.

[10] Wen mei W. Hwu and Pohua P. Chang. Achieving high instruc-
tion cache performance with an optimizing compiler. In 16th An-
nual InternationalSymposiumon ComputerArchitecture, SIGARCH
Newsletter, pages 242–251. ACM, ACM, 1989.

[11] André Seznec. A case for two-way skewed-associative caches. In
20th Annual International Symposium on Computer Architecture,
SIGARCH Newsletter, pages 169–168. IEEE, 1993.

[12] Kimming So and Rudolph N. Rechtschaffen. Cache operations by
MRU change. IEEE Transactions on Computers, 37(6):700–709,
June 1988.

[13] Amitabh Srivastava and Alan Eustace. ATOM: A system for build-
ing customized program analysis tools. In Proceedings of the SIG-
PLAN’94 Conference on Programming Language Design and Im-
plementation. ACM, 1994.

[14] Steven J. E. Wilton and Norman P. Jouppi. An enhanced access and
cycle time model for on-chip caches. Report 93/5, DEC Western
Research Lab, 1993.

