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Abstract

Soeculative precomputation enables effective cache
prefetching for even irregular memory access behavior, by
using an alternate thread on a multithreaded or multi-core
architecture. This paper describes a system that constructs
and runs precomputation based prefetching threads via
event-driven dynamic optimization. Precomputation threads
are dynamically constructed by a runtime compiler from the
program’s frequently executed hot traces, and are adapted
to the memory behavior automatically. Both construction
and execution of the prefetching threads happen in another
thread, imposing little overhead on the main thread. This
paper also presents several techniques to accelerate the pre-
computation threads, including colocation of p-threads with
hot traces, dynamic stride prediction, and automatic adap-
tation of runahead and jumpstart distance. The adaptive
prefetching achi eves 42% speedup, a 17% improvement over
existing p-thread prefetching schemes.

1 Introduction

Software-based prefetching [2, 15, 13, 12, 4, 17, 26] is
a powerful technique to hide the increasing latency gap be-
tween processors and the memory subsystem. It significantly
increases memory level parallelism by overlapping memory
stalls with other useful computation.

Software prefetching can be enabled either by inserting
prefetch instructions into the original code, which we call
inlined prefetching, or by running prefetch instructionsin a
separate thread (i.e. precomputation thread, or p-thread), ei-
ther on amultithreaded or multi-core architecture. While in-
lined prefetches are typically effective for simple addressing
patterns (e.g., strided addresses), p-thread based prefetching
has the potential to handle more complex address patterns
(e.g. pointer chasing), or accesses embedded in more com-
plex control flow. Thisis because the prefetching addressis
computed via actual code extracted from the main thread.

A successful precomputation-based prefetcher must ad-
dress several chalenges. It must be able to determine the
proper distance by which the prefetching thread should lead
the main thread, and it should have the ability to control that
distance. It must create lightweight threads that can actually
proceed faster than the main thread, so that they stay out in
front. It must prevent p-threads from diverging from the ad-
dress stream of the main thread, or at least detect when it
has happened. This divergence may be the result of control

flow or address value speculation in the p-thread. Runaway
prefetching may unnecessarily displace useful data, resulting
in more data cache misses in the main thread.

In this research, we exploit an event-driven dynamic op-
timization system to dynamically construct precomputation
code, called p-slices. P-dlices are created from the main
thread’s hot execution traces stored in the dynamic opti-
mization system’s code cache. To clarify, we refer to the
prefetching code by the term p-dice, and an instantiation of
that code running on the processor a p-thread. By embed-
ding our p-slice generation in an event-driven dynamic op-
timization framework, we can overcome the key challenges
of thread-based prefetching. We can adapt the same program
differently depending on the program’sdatainput and the un-
derlying hardware architecture (e.g., the number of available
hardware contexts, the size, organization, and latency of the
cache, etc.), and adapt to changing behaviorsat runtime (e.g.,
different loads become problematic, or control flow behavior
changes).

Additionally, we employ several techniques to accelerate
the p-thread ahead of the main thread. First, we exploit dy-
namic hardware load stride prediction to speculatively spe-
cialize p-slices, dlowing for simpler p-slices with lower
overhead. Second, we dynamically examineap-slicetoiden-
tify its loop induction variable(s) (either inherited from the
origina hot trace or due to hardware detected strides), a-
lowing us to jump start the p-slice execution a few iterations
ahead of the main thread. This technique works even if live-
in valuesin a p-dice do not exhibit any predictable patterns.
Third, we leverage the streamlined nature of the hot tracesto
minimize control flow related overhead. Fourth, we continu-
ously monitor the success of prefetching, and have the abil-
ity to adapt and repair the p-dlices along severa dimensions
until the memory latency is covered. Finaly, we devise a
low overhead mechanism for tracking prefetching addresses
to determine when they become out of sync with the main
thread. We use this to prevent a p-slice from running away
from the main thread.

This dynamic precomputation-thread generation frame-
work achieves 17% improvement over prior precomputation
approaches for prefetching, and 11% improvement over our
prior dynamic optimization approach for inlined prefetching.
We show there is actually synergy between the dynamic p-
thread and inlined prefetching, as we get even better results
when the two techniques are combined.

The low monitoring and optimization overhead of the



event-driven optimization framework allows p-slices to be
continuously adapted and repaired. In addition to adapt-
ing jump start distance and runahead distance, we can aso
change whether we use speculative strides or extracted code
and whether we use inlining or p-threads to target specific
loads and stores.

2 Redated Work

There is a large body of prior research in precomputa-
tion based prefetching. Precomputation threads may run in
a separate thread [3, 6, 19, 5] or in a dedicated hardware
engine [14, 1, 18], concurrently with the main thread. P-
slice code can be constructed statically [7, 13, 10] or dynam-
icaly [6, 19, 12].

Chappell, et a. [3] propose the Simultaneous Subordi-
nate Microthreading (SSMT) architecture which uses mi-
crothreadsto do prefetching, branch prediction, or even hard-
ware resource management. Roth and Sohi [19] exploit
the Speculative Data-Driven Multithreading (DDMT) archi-
tecture to perform precomputation to target L1 misses and
branch mispredictions. Branch results from helper threads
are passed to the main thread via integration. DDMT stati-
cally constructs hel per threadsviaofflineanalysis. Execution
based prediction (EBP) [27] adds the ability to loop in the
helper threads. Dependence Graph Precomputation by An-
navaram, et a. [1] detects the backward slice of aload from
among fetched instructions in the instruction queue, and ex-
ecutes those instructions in a separate context to precompute
the address.

2.1 Static Precomputation Construction

Callins, et a. [7] manually construct precomputation
code to prefetch delinquent loads based on offline profil-
ing. Luk [13] proposes a software controlled precomputa-
tion scheme to generate p-slices from the manually anno-
tated program code. A compiler algorithm is developed by
Kimand Yeung [10] to automatically generate p-slices at the
high level language. Quinones, et a. [16] develop acompiler
framework, called Mitosis, to generate speculative thread
code. Instead of prefetch addresses, Mitosis uses p-dices
to computelive-in valuesfor a specul ative multithreading ar-
chitecture. Liao, et a. [11] propose post-pass binary analysis
to construct p-slices at the binary level. Kim, et a. [9] re-
duce p-thread impact on the main thread’s performance by
judiciously invoking p-threads. Rabbah, et al. [17] embed
precomputation code into VLIW traces, using unused issue
dots.

Static construction of p-slicesfailsto support legacy code,
does not adapt to program behavior, and typically does not
have sufficient information to determinethe prefetch distance
accurately. Also, it cannot adapt to different architectures
without separate binaries.

Our work enables new levels of adaptability by generat-
ing and improving p-threads within a dynamic optimization

framework. In addition, it also introduces new techniques
to push the p-thread in front of the main thread, to further
streamline the p-threads, and to detect and recover p-threads
that get off track.

2.2 Dynamic Precomputation Construction

Collins, et al. [6] exploit Dynamic Speculative Precompu-
tation (DSP) to identify delinquent loads and construct hel per
threads via hardware code slicing. Chaining threads, which
prefetch delinquent loads in aloop, are created by hardware
examination of a buffer containing committed instructions.
Slice processors, proposed by Moshovos, et al. [14] simi-
larly create dlices for individual loads by examining traces
of committed instructions. Our approach leverages the com-
putational power of a separate software thread to construct
dlices, reducing hardware overhead, and increasing the po-
tential sophistication of slice creation.

More recent work by Lu, et a. [12] dynamicaly con-
structs p-slices via a runtime optimizer running on an idle
core. A single user-level thread is multiplexed to detect the
program’s phases, construct the p-thread code, and perform
precomputation prefetching. Thus it often limits how long a
p-thread can run without missing other critical eventsin the
system.

Our research is distinct in the following ways. (1) Exe-
cution, p-slice construction, and p-thread execution all take
place in parallel, minimizing overhead to the main thread.
This alows more aggressive optimizations, as well as con-
tinuous monitoring, repair, and adaptation of the p-slices.
(2) We devise an adaptive approach to discover runahead
distances for more efficient prefetching. (3) We apply sev-
eral more aggressive optimizationsto accelerate the p-thread
ahead of the main thread.

3 Precomputation Thread Construction and
Optimization

Our precomputation based prefetching is built on the Tri-
dent event-driven dynamic optimization framework [25, 26].
This framework exploits hardware monitoring to detect the
program’s interesting behavior and trigger compiler opti-
mizations that adapt to that behavior. Optimization and exe-
cution occur simultaneously in separate threads, minimizing
the performance overhead of the adaptations. This allows
much more aggressive optimization than traditional dynamic
compilation systems. Typically, a monitoring event triggers
an optimization thread, which either creates a hot trace that
goes into the code cache to be executed by the main thread,
or improves an existing hot trace. Prior optimizations within
that framework include dynamic value speciaization [25]
and inlined software prefetching [26]. 1n thiswork, we show
that precomputation-based prefetching enables benefits be-
yond that available to inlined software prefetching (and con-
ventional hardware prefetching); in particular, it has the abil-
ity to prefetch more complex memory access patterns. We



also demonstrate ways to manage the interaction of the two
methods dynamically, in a system that supports both.

We extend the Trident framework by adding a runtime
optimizer to perform p-slice construction, acceleration, and
adaptation. In this section we describe how we form precom-
putation dlices after the dynamic optimization system detects
the hot execution traces in the main thread. We then apply
our base optimizations on the p-dlices.

3.1 P-Slice Construction

The basic function of the dynamic optimization system is
to detect the program’s hot execution traces (i.e. basic in-
struction blocks often executed together). Then further op-
timizations can be gradually applied to the trace upon new
optimization events.

After a hot trace has been executed a number of times, a
delinquent load (one which frequently misses in the cache)
will generate a delinquent event. A |oad becomes delinquent
if its cache miss rate is above a threshold and its average
latency for the last M misses is also above a threshold [26].
Then the runtime optimizer is triggered to run and perform
optimizations on thistrace. In this research, the optimization
is to construct a p-dlice to prefetch delinquent loads within
the trace. We choose to construct the p-dlice only if the trace
contains a self loop.

The goal of p-dice construction is to extract al instruc-
tions which are necessary to compute the memory address
for a delinquent load, so that we can prefetch the load. To
do so, the runtime optimizer first identifies the hot trace con-
taining the event-triggering load. Then it scans the trace to
record al delinquent loads inside the trace. The delinquent
loads are looked up from the hardware Delinquent Load Ta-
ble (DLT). The DLT is introduced in [26], and its format is
shown in Table 2.

Because there is a delay between the event and when the
optimizer thread reads the DLT, it is common to have mul-
tiple loads from the same trace tagged as delinquent by the
time the trace is ready to be optimized. For each recorded
load, the optimizer analyzes the hot trace in reverse order,
beginning with the delinquent load, to build up aslice of in-
structions the load depends on, either directly or indirectly.
This is called back-dicing. As back-dlicing continues (go-
ing through the loop multiple times), instructions that have
been examined in a previous traversal may need to be ex-
amined again for dependencies with new instructions in the
dice. This process stops when the slice converges, similar
to prior research [6, 12]. After back-dlicing is done, we ap-
ply some base optimizations on the p-dlice, such as hoist-
ing loop-invariant instructions out of the loop, and convert-
ing matched local load/storeinstructionsto single MOVE in-
structions. Here, we improve the quality of p-sices from
prior research by adding the following new optimizations:

Loop Rerolling — A hot trace may contain multiple
copies of the same code due to loop unrolling done during

static compilation. We perform loop re-rolling for the p-
dlice (i.e. removing the redundant loop copies) to reduce
duplicated computation inside a p-dice. This optimization
increases the granularity at which we can set the prefetch
run-ahead distance, since the prefetch distance is aways an
integral number of iterations.

Object-Based Prefetching — We perform same-object
based prefetching, as in our prior work on inline prefetch-
ing [26]. Same-object prefetching clusters prefetches falling
into the same cache line into a single prefetch. This opti-
mization helps reduce redundant prefetches and reduces the
overhead of the p-dlice.

Control Flow Removal — We remove control flow from
p-dicesto streamline the code. Note that a hot trace contains
a single path, but multiple exit branches (and branch con-
dition computation), which we can choose not to include in
the p-slice. Skipping control flow helps reduce the instruc-
tion count inside the p-slice and alows us to further opti-
mize the p-slice. This optimization works for two reasons.
First, the prefetching thread often continues to prefetch ef-
fectively even when control flow does not match the main
thread exactly. Second, we devise a mechanism in the p-
slice to recover when the p-thread diverges too much from
main thread, which we discuss in Section 3.5. Prior work
typicaly includes al control flow or no control flow in the
p-slice. We evaluate this as an optimization in this work, be-
cause prior compilation-based techniques[10, 12] are among
theformer, maintaining all or most control flow in the p-slice.

During p-dlice construction, thelive-in values used to start
the precomputation thread are also identified. Instructions
are inserted at the entrance of the p-dlice to retrieve live-in
values. Then, we lay out the p-slice code as shown in Fig-
ure 3.1 (a). Details of the code are explained next.

3.2 P-thread Startup and Termination

During construction, the optimizer a so identifies precom-
putation spawning points and termination points. The hot
trace in the main thread is then re-generated with software-
based primitives to trigger the generation of a p-thread and
to kill the p-thread. The new hot trace has its layout shown
in Figure 3.1 (b).

To start up a p-thread, we need to communicate al live-in
values from the main thread to the p-thread. Prior research
uses a hardware mechanismto perform afast copy of register
state [6] or uses a memory based mailbox mechanism [12].

In this paper, we use a simple software memory buffer to
communicate live-in values. The main thread (inside the hot
trace) writes the value to the buffer, and the p-thread reads
fromit. Thisis similar to the mailbox mechanism, but we
designed it in such a way that the communication buffer is
relocatable (so that it can potentially be repaired). Thus we
map the buffer to a cold data cache block to help retain these
valuesinthe cache. Thecold cacheblock isonethat islightly
accessed during a recent time window, as indicated by hard-



read live-in values
reset the loop counter registers initializat

hoisted code pre-loop
precomputation code for jump start code

loop:  p-slice code
increase loop counter registers
sync with the main thread
while( out-sync ) { p-slice
check prefetching address coherence [ body

pause p-thread

}

jump loop

@

write live-in values
L on hot trace
initialize the loop counter (memory based) { antrance
trigger the p-thread

loop:  hot trace code body hot trace
increase the loop counter body

jump loop
kill the p-thread } on the _
trace exit

(b)

Figure 1. The code layout of (a) precomputation slices and (b) hot traces to trigger/terminate precom-

putation threads

ware proposed previously [25]. We found that most p-threads
only need one or two live-in values. Thus, copying live-in
values has minimal overhead for the main thread.

3.3 P-Thread Priorities

To minimize any negative performance impact on the
main thread, a p-thread is always triggered to run at low pri-
ority during instruction fetching. Thisis different from some
previous systems [6]. This works because in the two cases
where you want the p-thread to run at high priority (p-thread
startup, and when the p-thread |ags behind the main thread)
the main thread typically will experienceload stalls that give
the p-thread ample access. In addition, due to our accelera-
tion, the p-thread often gets a head start from the main thread.
These mechanisms are sufficient to allow the p-thread to stay
ahead of the main thread, even at alower priority.

We assumethe ICOUNT fetch policy [24], and adjust pri-
orities by imposing a constant bias.

3.4 P-Thread Synchronization

Prefetching too far ahead of the main thread often leads
to performance degradation. Thisis because prefetching not
only competes for memory bandwidth, but also may replace
useful data. In addition, prefetched data may be overwritten
by other loads before being consumed by the main thread.

To prevent this from happening, a p-thread is synchro-
nized to set a limit to how far beyond the main thread it
can get. In this research, we devise a new mechanism to
let p-threads take the bulk of the responsibility for synchro-
nization and let the main thread run unencumbered. The
main thread's only responsibility is to update aloop counter
in memory every iteration. The p-thread also keeps a loop
counter (in aspareregister), and comparesit with the counter
in memory. If the p-thread’s counter exceeds the main
thread’s counter by more than the prefetch distance thresh-
old, the p-thread blocks (or pauses) itself, until the main
thread catches up.

To avoid any complicated wakeup scheme, we simply
spin-wait for the main thread to update the counter. Since
the p-thread is running at a low priority, spin-wait does not
consume execution resources needed by the main thread.

Prior research [6, 12] used a fixed synchronization dis-
tance. In [12], it also terminates p-threads when the syn-
chronization distance is reached. Our system automatically
adapts this distance if the p-thread is not efficient.

3.5 P-Thread Address Coherency

In existing precomputation schemes, once a p-thread is
spawned, it often runs along without further interference
from the main thread until it is killed. The prefetching ad-
dress stream is initiated based upon the live-in values.

However, we found that even before the p-thread termi-
nates (i.e. the main thread exits the hot trace), it is often
possible for the prefetch stream to diverge from the main
thread's address stream. This may be due to store instruc-
tionsthat are left out during the p-dlice formation. However,
we also see this in our system because of our use of spec-
ulated strides (discussed in the next section). They may be
correct for hundreds of accesses, but then a discontinuity in
how memory was allocated is unaccounted for, and all fu-
ture accesses are wrong. One hardware solution [5] uses the
global history register to check control flow consistency be-
tween the main thread and the p-thread. We instead choose a
reactive technique with low overhead.

In this study, we propose a low-overhead software solu-
tion where the p-thread checks if its address stream is co-
herent with the main thread. First, it consults the DLT for
the last address of a delinquent load. Then it computes the
load’s expected address, knowing how far it is ahead of the
main thread. If the expected address is off from the cur-
rent prefetching address by more than a given threshold, it
is treated as runaway prefetching. This check is only done
when the p-thread is about to block because it is too far



ahead; thus, in the common case thereis no overhead for the
check. Because the main thread will experience stalls once
the prefetcher diverges, the p-thread will always get ahead
and check for the divergence soon after it happens. This ap-
proach also prevents us from over-reacting to a quick tempo-
rary divergence.

When adivergenceis discovered, wetry to re-synchronize
it with the main thread. Thisis easy when the base address of
the load was obtained as a live-in, or as a constant from the
DLT. P-threads can then reset their live-in values from these
values, and execution continues after the p-dliceinitialization
code. For more complex address computation in the p-dice,
it may not be possible to re-synch with the main thread. In
that case, the p-thread terminates itself.

4 Accelerating and Adapting P-Threads

It is critical that we minimize the overhead of the p-slice.
Thisreducesinterference with the main thread, but moreim-
portantly it is what enables the prefetching thread to stay in
front of the main thread. This section describes several tech-
niques to speed up the p-thread. These include co-locating
p-slices with hot traces, using speculative strides to simplify
complex load recurrences, and jump-starting p-threads.

41 P-Thread and Hot Trace Co-L ocation

To eliminate conflicts between the main thread and the p-
thread, we co-locate the p-slice code with its hot trace. When
a p-diceis constructed, the run-time optimizer needs to re-
generate a new trace with the p-thread trigger and termina-
tion instructions inserted. Due to the cold color layout pol-
icy, the new trace will be located at code cache blocks which
map to the least frequently used cache blocks. Thus, by ap-
pending the p-thread code to the end of its corresponding hot
trace, we can reduce |-cache misses for the p-thread and of -
ten allow at least part of the p-thread code to be prefetched
when the hot trace runs.

Additionally, this allows a hot trace and its p-thread to be
invalidated in asingle operation. If ap-slice needsto be mod-
ified or repaired to adjust the prefetch distance, we can often
do it in place by just changing constants. |f more signifi-
cant repair is needed (e.g., new delinquent loads identified),
we will re-generate both the hot trace and the p-dlice, so that
they can continue to be co-located.

In experiments not shown in the results section, we ex-
amined the interaction between co-location and the relative
priority of prefetching threads and the main thread. Without
co-location, we needed to give the p-threads high priority
to alow them to stay ahead of the main thread. With co-
location, keeping the p-threads at low priority gave the best
results. Thiswas due to the lack of interference between the
two with the co-location optimization (in particular, the main
thread not interfering with the p-thread).

4.2 P-diceswith Speculative Strides

Using the delinquent load table (DLT) in the dynamic
optimization framework, our runtime optimizer can detect
data access patterns that occur during execution. We there-
foreleverage the hardware monitoring mechanism (the delin-
quent load table, or DLT) from [26] to detect speculativeload
strides. We found that some loads that have very complex re-
currence (resulting in high-cost p-dlices) can sometimes be
prefetched with a simple strided recurrence instead. For ex-
ample, ap-dlice for a pointer chasing loop, where each load
(prefetch) depends on prior delinquent loads can be replaced
by a simple strided loop where the prefetches are all inde-
pendent.

Following is areal code example from mcf. The original
traceisapointer chasingloop. After the hardwaredetectsthe
strides from both pointer loads, we can simplify it asfollows.

origina p-slice simplified p-slice with strides
LDQ a2, 104(s2)
loop: LDQ a2, 104(s2) loop: PREF  (104-120)(s2)
PREF  (0-192)(a2)
LDQ s2, 0(a2) SuB s2, 120
SuB a2, 192
BNE tO, loop JMP loop

Here, thefirst load and the second load in the original p-dlice
have speculative stride values of -120 and -192, respectively.

With the speculative stride optimization, the new p-dice
code can run much faster than its original form. This op-
timization is made more effective with our new mechanism
for address coherence detection and re-synchronization, dis-
cussed in Section 3.5.

4.3 P-Thread Jump Starting

Sometimes, the only way to get the prefetch thread ahead
of the main thread is to give it a head start. Existing dy-
namic precomputation schemes (e.g. [12]) typicaly start
p-threads from the same starting point (same iteration) as the
main thread.

Our goal isto jump start p-threads multipleloop iterations
ahead of the main thread. To do this, we scan the hot trace to
identify its loop induction variables, which are aso included
in the p-dlice. We pedl them off and hoist them outside the
p-dice loop (see Figure 3.1 (a)). Then we either duplicate
the peeled code severa times, or in many cases simplify it to
asingle instruction (e.g., if the induction is a constant add).
For exampl e, thefollowing p-sliceis extracted from an actual
hot trace:

original p-slice p-slice with jump start
LDA t1, 256(tl)

##loop starts— ##— loop starts —

LDQ V0, 0(t2) .

ADDQ vO, t1,1t3

PREF zero, 8(t3)
PREF zero, 72(t3)
ADDQ t1, 128, t1




Here, t1 is the induction variable which has a stride value
of 128. Thus, we start prefetching on the third iteration by
adding 256 to t1 before entering the loop.

Prior work also used induction unrolling [19, 6], but only
to target asingle load n iterations ahead. They did not use it
in conjunction with loop-based prefetching.

4.4 Self-adapting Runahead and Jump-Start

Prior proposed precomputation prefetchersuse fixed runa-
head distancesto synchronizewith the main thread. Here, the
runahead distance refers to how many loop iterations the p-
thread can be in front of the main thread. Finding the correct
runahead distance, however, is difficult. It depends on the
architecture, on the behavior of all loadsin the loop, and the
datainputs. Prefetch effectiveness deteriorates rapidly when
the prefetch distance is wrong.

In this paper, we use an adaptive approach to discover the
runahead distance, and adjust it when the memory behavior
changes. A good initial estimateis:

M AX (average latency per load)

@

Runahead distance = —— - -
minimal execution time of trace

We get the average load latency from the DLT table.
The minimal execution cycles of the trace can be found in
the trace performance monitoring hardware of Trident [25].
However, our framework adapts so efficiently that it is not
important that our initial estimate be accurate, and we can
likely avoid the overhead of computing these values.

The best indication that the p-thread is successfully run-
ning ahead of the main thread is that it is often blocked be-
cause it runs up against the runahead distance. Thus the p-
thread keepsalog in memory of how many timesit isblocked
because it is too far ahead of the main thread. Since the p-
thread has a loop counter (typically in a spare register), we
can compute the ratio of the p-threads blocked count relative
to how many iterations it runs freely. The jump-start dis-
tance may betoo small if theratio istoo low (say, 25%). The
low ratio means that the p-thread probably cannot run fast
enough. Then we dynamically adjust the jump start distance
until the prefetched loads are effectively covered. In[26], the
repairing techniqueis directly applied to individual prefetch
instructions to patch their prefetch distances. The prefetch
distance can be limited by the ISA (e.g. 16-bit offset in
the prefetch instruction). Here, we repair the precomputa-
tion thread’s runahead distance relative to the main thread as
well as its jump start distance. These parameters control all
prefetch instructionsin the p-dlice.

One last axis of adaptability is our ability in this frame-
work to do both inlined and p-thread prefetching. We may
want to switch between one or the other when (@) no idle
hardware contexts are being found available, (b) the over-
head of inlined prefetchingis affecting the main thread, or (c)
the load recurrence is simplified because we detect a stride
in hardware. None of these advantages of adaptability are

reflected in our current results. Our heuristic for choosing
inlined or p-thread prefetching is very simple.

5 Methodology and Background

The performance of precomputation based prefetching is
evaluated on asimulated simultaneous multithreading (SMT)
processor [24]. We use simulation dueto the unavail ability of
the assumed performance monitoring mechanisms in exist-
ing processors. All simulations were run on SMTSIM [22],
an emulation-based cycle-level simulator of an SMT proces-
sor. We developed a lightweight dynamic compiler to per-
form our proposed optimizations, which runs as a simulated
thread on our simulator, alongside the main thread execution
and the generated hel per threads.

These techniques apply equally to a multi-core architec-
ture, but we use an SMT platform for two reasons. Firgt, it
alows usto prefetch into the L1 cache. Second, it forces us
to keep the thread overhead low to minimize interference.

5.1 BasdineProcessor Architecture

Our baseline architectureis a 4-issue 20-staged SMT pro-
cessor with four hardware contexts. The processor fetch pol-
icy isICOUNT2.4, which alows up to four total instructions
from up to two threads to be fetched per cycle[23]. The pro-
cessor includes hardware prefetching stream buffers[21] for
data accesses. The stream buffers are guided by a stride pre-
dictor, and buffers are allocated using a confidence scheme.
The hardware stream prefetcher is configured aggressively,
with 8 stream buffers each with 8 entries. This ensures that
the easily prefetched loads are aready handled in the base-
line architecture, and our improvementscome only from han-
dling the more difficult ones. Because our prefetcher is dy-
namic, though, it automatically targets those loads not han-
dled by the hardware prefetcher. For some of the applica-
tions in this study, the performance of writes was critically
important. Therefore, our baseline processor has the abil-
ity to retire stores before they are performed to the cache (to
not overstate the effect of store prefetching). We model an
8-entry post write buffer, and only stall when we have more
than eight incomplete retired stores. The baseline processor
configuration is shown in Table 1.

5.2 Benchmarks

Our results target the memory-intensive programs from
the SPEC 2000 benchmarks. We profile al benchmarks and
rank them using average miss penalty per load, choosing the
top seven FP benchmarksand thetop seven INT benchmarks.
These benchmarks include applu, equake, facerec, galgel,
mgrid, swim, wupwise, and gap, gz p, mcf, parser, twolf, vor-
tex, vpr. All benchmarksare compiled on the Alphaplatform
(Digital Unix V4.0F) with the highest compiler optimization
options. Note that for applications with fewer cache misses,
our optimization provides |ess performance gain; however, it



Pipeline 20-stage, 256-entry ROB, 224 registers
Four hardware contexts

ICOUNT 2.4 fetch policy

Queue Sizes 64 entries each 1Q, FQ, and MQ
Post write buffer: 8 instructions deep

Fetch Bandwidth 4 total instructions

I ssue Bandwidth 4 instructions per cycle

up to 4 Integer, 2 FP, 2 loads/stores
2bcgskew, 64K entry Meta and gshare
16K entry bimodal table

64 KB 2-way associative, 3 cycles

64 KB 2-way associative, 3 cycles
512 KB 8-way associative, 11 cycles
4 MB 16-way associative, 35 cycles
350 cycles

Branch Predictor

ICache size & latency
L1size& latency
L2 size & latency
L3 size & latency
Memory Latency

Hardware stream
buffers

8 stream buffers; each buffer 8 entries.
Stride Predictor.

Table 1. The baseline SMT processor configu-
ration.

also does not introduce much overhead. The observed over-
head is typically less than 1% (in Section 6.1), which is con-
sistent with our prior results [26].

Each benchmark is simulated for 200 million instructions.
The simulator is warmed up with 5 million instructions be-
fore the true ssimulation starts. During the warmup phase,
dynamic optimization and related structures are not enabled.
Simulation starts from the single simulation point chosen by
SimPoint [20]. Figure 2 shows the base performance when
these benchmarks are executed alone on the baseline archi-
tecture. On average, hardware stream prefetching achieves
37% speedup over the same baseline configuration without
hardware prefetching.

Note that our final instruction throughput results (IPC) re-
flect only the number of instructions that the original code
would have executed when running alone.

5.3 TheDynamic Optimizer

Our dynamic optimization system is based upon the Tri-
dent framework [25, 26]. Trident is a software/hardware
solution to take advantage of the processor’s abundant on-
chip paralelism (SMT or CMP) to perform concurrent op-
timization on a thread while it is running. It introduces a
conservative extension to existing processors' performance
monitoring structure to perform low overhead profiling. The
hardware structure detects the program’s behavior and trig-
gers optimization events. These events spawn aruntime opti-
mizer in aseparate hardware context. Table 2 shows two ma-
jor hardware structures used in the framework — the branch
profiler and the delinquent load table. These are the same
structures used in previous research [26].

We extend the Trident dynamic compiler to construct the
p-slice code from the program’s hot execution traces. The
dynamic compiler, running as an optimizing helper thread

Branch profiler 256-entry, 4-way associative.
Each entry has a 4-bit counter.

Three 16-bit bitmaps to catch branch traces

Delinquent Load Table | 2-way associative, total 1024 entries.
(DLT) Each entry keeps track of these parameters
for each load in agiven monitor period:
access count
cache miss count
miss latency
last address
address stride
Access counter threshold: 256
Miss counter threshold: 8

Table 2. Trident hardware monitoring struc-
tures
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15 Ebasic SMT + H/W prefetching (baseline)
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Figure 2. Performance of the baseline SMT pro-
cessor

concurrently with the main thread, dynamically places the p-
slice code in the code cache and patches the main thread to
trigger and terminate p-threads.

In this research, the main tasks performed by the runtime
optimizer are generating and optimizing hot traces, gener-
ating p-thread code, or inserting inlined software prefetches
into hot traces if the p-thread code cannot be generated. A
lightwei ght runtime optimizer performs optimizations on the
streamlined instruction traces. The optimizer is writtenin C
and compiled with gcc -O5 on the Alpha platform. Special
careis taken to make the runtime code thread safe.

Upon an optimization event, the runtime optimizer is
spawned to run in a separate processor hardware context,
concurrently with the main thread. Thisthread is initialized
by our runtime system to set up its starting PC, stack pointer,
global datapointer, and the priority according to theinforma-
tion stored in the thread’s registration structure. We assume
the total initialization requires 2000 cycles. Increasing this
assumed latency, e.g. to 4000 cycles, had no observable ef-
fect on performance.

The runtime optimizer creates hot traces and the p-dlice
code, and stores them in a memory buffer (called Code
Cache). In this study, we assume the code cache has un-
limited size, even though Trident has the ability to invalidate
individual traces. The code cache management policies are
discussed in [8].
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Figure 3. Comparison of basic p-threads with runahead distance repairing

5.4 Baselinelnline Prefetching

In this study, we start with the self-adapting prefetching
approach built into the Trident framework in [26]. This ap-
proach uses a branch profiler to find hot traces and inserts
them into the code cache. The architecture use the delin-
guent load table find delinquent loads. For these loads, the
DLT may provide a stride prediction (if one exists) for the
load’s miss stream. Thisis used as part of the prefetch dis-
tance calculation.

Thisapproach tracks only the loads executed in hot traces.
Prefetch instructions are dynamically inserted into these fre-
guently executed hot traces, using a prefetch distance of one
predicted miss stride ahead of the current load's address
calculation. The event-driven dynamic optimization sys-
tem continuously monitors the performance of the software
prefetches. If aload is repeatedly classified as delinquent,
it's prefetch distance is gradually increased by just patching
the prefetch address calculation in the hot trace until it is no
longer delinquent or a maximum prefetch distance is used.
This allows dynamic search for the appropriate prefetch dis-
tance. In Section 6, we compare the precomputation-based
prefetcher against this prior approach to aggressive inline
prefetching, as well as examining a combined approach.

6 Results

This section evaluatesthe cost and performanceof our dy-
namically generated precomputation based prefetching tech-
nique. The baseline is the architecture described in the prior
section. The baseline instruction throughput is shown in Fig-
ure 2. All performance improvements shown in this sec-
tion represent performance gains over aggressive hardware
prefetching. All performance improvement is measured as
the relative change in effective |PC over the baseline.

6.1 Overhead of the Dynamic Prefetch Optimizer

The precomputation based prefetching technique incurs
overhead from the runtime optimizer during the construc-
tion of hot traces and the generation of p-slices from the hot
traces. The cost depends on how often the optimizer runs,
and how much it interferes with the main thread. To mea-
sure these factors, we dynamically construct hot traces and

p-dices without actually using them. We observe the total
performance degradation for the main thread to be 0.6% on
average. This low overhead is due to our combination of
hardware monitoring of events, and trace compilation and p-
slice construction and repairing occurring in separate threads
from the main thread (running at alow priority).

6.2 Basic Precomputation Threads

Figure 3 presents the |PC improvement due to precompu-
tation based prefetching. For these results, all the precompu-
tation dlices include control flow, asin [12, 10].

The first bar, labeled basic p-thread, represents the IPC
improvement using existing approaches (e.g. [12]) to gener-
ate p-dices. This result assumes a static runahead distance,
and does not include store prefetching, which we found crit-
ical for some applications, such as applu and swim. Thisre-
sult assumes a default prefetch distance for loads of 10 loop
iterations for al loops, which was found experimentally to
provide good results on average. The second bar is simi-
lar to the first one except that we enhance it with store miss
prefetches. We observe store prefetches boost performance
over 50% and 20% for applu and swim, respectively. The
third bar shows the performance improvement when we then
apply adaptive p-thread run-ahead distance. This technique
continues to monitor and adapt the maximum runahead dis-
tance until the memory accessis fully covered. We observe
speedups from applu, galgel, mgrid, and swim. We see mod-
est performance from this approach, but we do not experi-
ence the full gains from adaptation until we add further op-
timizations to our p-slices. Thisis for two reasons, (1) the
maximum runahead distance does not matter unless the p-
thread runs fast enough to get far ahead of the main thread,
and (2) we have more parameters to adapt beyond runahead
prefetch distance. The former is particularly a factor for the
integer benchmarks, where heavy control flow slows down
the p-threads.

6.3 Accelerating Precomputation Threads

In Figure 4, we show how our acceleration techniquesim-
prove the p-thread efficiency. We first remove the control
flow from the p-thread. Removing control flow makes the
p-sices much more lightweight, but increases the chances
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Figure 4. Accelerated p-thread with self-adaptation

that the p-thread will get out of synch with the main thread.
This also opens up opportunities for us to exploit specula-
tive strides from hardware prediction and accelerate the p-
thread’s execution by jump starting it. For comparison, the
first bar in the figure is the basic p-thread approach with
run-ahead repairing and store prefetching (the third bar in
Figure 3). The second bar shows what happens when we
remove control flow and their dependent instructions from
p-threads. This simplification has some benefits on swim,
wupwise, gap, and vpr, but causes slowdowns on equake and
mcf. Thisis because those two programs have more complex
memory access recurrences, and are more likely to get out
of synch without control flow to guard against it, resulting in
runaway p-threads. Because we do not yet have the address
coherence mechanism (included in the next bar) to correct
these runaway threads, the overall result of removing control
flow isawash.

The third bar adds to the previous result the address co-
herence detection and the ability to jump start the p-thread a
few iterations ahead. The address coherence detection makes
sure the p-thread does not get out of sync with the main
thread, and if it does, we try to re-synchronize the live-in
values for the p-thread. The jump start alows the p-thread
to get out in front more quickly. Jump start distances are
repaired when p-threads are frequently blocked (i.e., when
their potential is not fully released). We observe as much as
a25% performanceimprovement from applu, 40% from gal-
gel, 14% from mcf, and 11% from gap. The average speedup
is 39%, which is 17% better than previous techniques (in-
cluding store prefetches).

6.4 Synergy with Inline Prefetching

Here we compare and combine the performance of our
precomputation thread acceleration and adaptation with in-
lined prefetching using our previous optimization frame-
work [26]. The result is shown in Figure 5. For compari-
son, thefirst bar and the third bar in the figure are taken from
Figure 3 and Figure 4, respectively.

The second bar (labeled inlined prefetching) in the graph
shows the results for the inlined software prefetching from
the prior work. This is an aggressive dynamic inline

prefetching system that takes full advantage of the Trident
framework, including dynamic detection of delinguent |oads,
stride prediction of pointer loads, and dynamic adaptation of
the prefetch distance. It is called inlined prefetching, since
the prefetches are inserted into the hot trace. No p-thread
prefetching is performed, and all hot traces potentialy have
in-lined prefetching applied to them.

Although there is significant redundance between the two
prefetching techniques, we find that neither subsumes the
other, and there is advantage to using both in a system. That
will be especially truein a dynamic optimization system like
Trident, which can adapt the prefetching approach based on
runtime behavior. Thefourth bar (repairing + acceleration +
inlined) in Figure 5 combines our precomputation prefetch-
ing with inlined prefetching.

For this result, we apply a very simple heuristic to decide
which prefetch approach to apply. We use precomputation
on all looped hot traces, and apply inlined prefetching when
thereisno loop. This exploitsthe low overhead (on the main
thread) for p-thread prefetching, but does not incur the p-
thread startup cost when prefetching a single load later in
the hot trace. Thus, for this result we create p-threads for
al hot traces that contain a loop back edge to the start of
the hot trace. For those hot traces no inline prefetches are
inserted. We only insert inline prefetches for the remaining
hot traces. The benchmark gap receives the most benefits
from this combination, since two of the critical loads actually
fall on a non-looped trace. Overall, the combination gains
11% better performance than our previous aggressive inlined
prefetching alone.

There are times, however, when inlined prefetching may
till outperform precomputation. One such case is when the
average loop count is low. In that case, the startup cost of
the p-thread does not alow it to do useful prefetching in
time. Because wefind it easier to detect these cases once the
hot trace and p-slice are optimized and in place, we initially
target al looped accesses with p-threads, then convert se-
lected hot traces to inlined prefetching. The last bar (repair-
ing + acceleration + conversion) shows performance vari-
ation when we convert qualified p-thread prefetching to in-
lined prefetching. We do this conversion when all delinquent
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Figure 5. Comparison of accelerated p-thread prefetching with inlined prefetching

loads within a trace have strided patterns and the trace has a
relatively small loop count (e.g. lessthan 5). Inthis case, we
terminate the p-thread, and instead do inlined prefetching for
the hot trace. Most benchmarks do not show any slow down,
and a few benefit. We notice that conversion does not occur
in applu because its loop has a large loop count. For mcf,
however, conversion gives much better performance. Thisis
because one of the critical loopsin mcf has avery small loop
count, and p-threads are frequently spawned and killed be-
fore doing useful work. In this case, inlined prefetching does
abetter job.

Further work to adaptively arbitrate between inlined and
precomputation prefetching is ongoing. Perhaps the most
compelling reason to have this ability, though, is to adapt
to changes in the availability of free hardware contexts. Al-
ready having demonstrated the ability to convert between the
two, we need only add an event that would trigger when a
particular p-thread spawn instruction consistently failed to
start a p-thread due to the lack of an available context. In
that case, that hot trace would be converted to use inlining.
If hardware contexts become available at alater date, an ag-
ing mechanism that forces hot traces to be regenerated on a
regular basis would ensure that the system moves back to ag-
gressive use of p-threads. We do not model this advantage,
though, as our measurement environment does not reproduce
the dynamic nature (jobs coming and going) of areal system.

One limitation of our use of the Trident framework is that
we are limited to accesses that occur within hot traces. Fig-
ure 6 shows the distribution of load misses in and out of
hot traces. The difference between the height of the bar and
100% represents cache misses that occur outside hot traces.
The percent of cache misses within a hot trace are broken up
into those that were found in loops (looped) by the dynamic
optimizer, and those not in loops. The results show that some
programs have most of their misses within hot trace loops,
whereas others do not. Applying both p-thread prefetching
for hot trace loops and in-lined prefetching for the other hot
traces allows us to efficiently address both kinds of misses.
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Figure 6. Dynamic load misses within hot
traces

We observe that over 85% of load misses are within dy-
namically generated hot traces. Among them, nearly 58%
of misses have the potential of being prefetched by using
precomputation. Note that vortex and gap have relatively
low miss coverage. Thisisin large part because of the low
dynamic coverage of the hot traces. However, most critical
cache misses from gap are covered by hot traces. Thisallows
us to prefetch them via precomputation, inlined prefetching,
or a combination.

7 Conclusion

Precomputation based prefetchingis apowerful technique
to hide long memory latencies, especialy for complex load
behavior. The godl is to create a precomputation approach
that allows the p-threadsto run far enough ahead of the main
thread to hide all of the memory latency.

In this paper, we extend the event-driven, multithreaded
dynamic optimization framework, Trident, to enable precom-
putation based prefetching by dynamically constructing p-
thread code from hot traces and accelerating p-threads for
efficient execution. We extract the hot trace loop induction
variables and duplicate the induction computation ahead of
the p-slice loop so that we can jump start the p-thread mul-
tiple loop iterations ahead. We adapt the prefetch runahead
distance and the jump start distance dynamically, until each
memory access is most effectively covered. We aso pro-
pose a new mechanism to keep the p-threadsin sync with the




main thread of execution by comparing the prefetched ad-
dress stream with the main thread's address stream — this is
done with virtually no cost in the common case.

Our accel eration technique combines software code anal -
ysis with hardware performance monitoring to improve the
efficiency of p-threads. Thus, we can exploit some patterns
static software systems cannot, and can adapt to the actual
runtime behavior of individual loads. Overall, we achieve an
average 42% speedup relative to the hardware stride based
prefetcher, and it is 17% better than previous dynamic pre-
computation approaches. In addition, using precomputation
for loops and dynamic prefetching for non-loops achieves
11% speedups over our prior dynamic prefetching technique.
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