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Abstract

This paper focuses on generating efficient software pipelined
schedules for in-order machines, which we call Converged Trace
Schedules. For a candidate loop, we form a string of trace
block identifiers by hashing together addresses of aggressively
scheduled instructions from multiple iterations of a loop. In this
process, the loop is unrolled and scheduled until we identify a
repeating pattern in the string. Instructions corresponding to
this repeating pattern form the kernel for our software pipelined
schedule. We evaluate this approach to create aggressive sched-
ules by using it in dynamic hardware and software optimization
systems for an in-order architecture.

1 Introduction
In-order and VLIW architectures rely upon the compiler to cre-
ate efficient schedules so as to attain faster clock cycles and
power efficiency. Software pipelining [17] was proposed as a
means to expose more ILP to these architectures. Even though
there have been numerous approaches [2, 3, 10, 12, 21, 4] to
software pipelining, it has remained a complex problem.

Kernel Recognition [2, 3, 4] algorithms are one class of so-
lutions to do software pipelining. These algorithms simultane-
ously unroll and schedule the loops. Scheduling is done by as-
suming a resource model for the target machine. The process of
unrolling and scheduling is carried out until a repeating pattern,
that is a kernel, is detected in the resulting schedules. Once a
kernel is detected in the unrolled and scheduled loop, a back-
ward branch to the beginning of the kernel is added to the end of
the schedule. This schedule becomes the new loop with the ker-
nel as the loop body. Dynamically forcing a repeating pattern to
materialize without compromising the efficiency and code size
of the schedules, and detecting such patterns has been important
issues with this class of algorithms.

In this paper, we examine using string matching to help guide
kernel recognition when constructing software pipelined sched-
ules for loops. We create a schedule for a candidate loop, by sim-
ulating the effect of executing the loop out-of-order. This results
in an unrolled and scheduled loop, where scheduling is done
across multiple iterations. The sequence of instructions in this
schedule are broken into Trace Blocks, where each trace block is
the sequence of instructions between two backwards taken loop

branches. The trace blocks are then hashed down to string IDs,
and in this way the whole schedule is converted into a string. We
can then use a string matching algorithm for kernel recognition
to find a repeating pattern in this string. We call these Converged
Trace Schedules, because we find that the string patterns seen in
the scheduled trace converge to repetitive patterns after several
scheduled iterations.

Our algorithm can be implemented offline in a profile guided
compiler or can be implemented in a dynamic optimization
system. In this paper, we evaluate dynamic implementations
for Converged Trace Schedules. We evaluate (1) using a soft-
ware thread to generate the converged schedule by sharing (con-
text switching on) the same processor with the program’s main
thread being optimized, (2) using a software thread running on
a different processor (in a multi-processor) in parallel with the
main program in order to generate the converged trace sched-
ules, and (3) using a special purpose co-processor to generate
the converged trace schedules. The performance of these ap-
proaches are compared with previously proposed aggressive dy-
namic trace scheduling techniques [18].

The rest of the paper is organized as follows. In the next
section we discuss related work. Section 3 gives an overview of
our architecture. Section 4 details the converged trace formation
algorithm, and three possible implementations of the algorithm
are described in Section 5. Section 6 elaborates on the additional
hardware features needed. In Sections 7 and 8 we discuss our
methodology and present the results. Finally we conclude in
Section 9.

2 Related Work
In this section, we discuss several relevant research efforts to do
software pipelining. We also present prior work related to trace-
based dynamic optimization systems and micro-architectural
features needed to implement them.

2.1 Software Pipelining
Various algorithms for software pipelining exist [3]. Broadly
these algorithms can be classified under the following three
categories: Enhanced Pipeline Scheduling [10, 12], Modulo
Scheduling [21, 22] and Kernel Recognition [2, 4]. A detailed
survey on these algorithms can be found in [3].
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2.1.1 Enhanced Pipeline Scheduling
For Enhanced Pipeline Scheduling techniques, instructions are
moved forward in the execution schedule. As these instructions
are moved out of the loop body into the prolog portion of the
schedule, they are also moved back into the bottom of the loop
body as operations from a later iteration. Even though this class
of algorithms prevent explosion of code size and can be efficient,
the algorithm is quite complex.

2.1.2 Modulo Scheduling
Modulo scheduling uses a different approach in that instead of
free code motion like in the previous approach, it first assumes
an Initiation Interval (II). II specifies a constraint that when the
desired schedule is executed repeatedly at intervals of II, there
should not be any stalls due to resource conflicts. Under this
constraint, the algorithm schedules each instruction in one itera-
tion and tries to arrive at a legal schedule for that iteration. This
legal schedule is the kernel that can be iterated indefinitely with-
out violating any dependency constraints. If no legal schedule
can be formed for the assumed II, then modulo scheduling is
tried for greater values of II. Usually, loops are unrolled before
the application of modulo scheduling to enable arriving at legal
schedules for lower IIs. While this algorithm is elegant, deter-
mining minimum II has been an issue and one approach( [22])
has been to start with the minimum possible II (determined by
the critical path in the loop) and iteratively increment II until a
legal schedule can be formed or an upper bound is reached.

2.1.3 Kernel Recognition
Kernel Recognition algorithms [2, 4] simultaneously unroll and
schedule the loop. This process is continued until a repeating
pattern is detected in the schedule. These kernel recognition al-
gorithms are capable of forming very efficient schedules but can
result in schedules with large code sizes as a result of unrolling.

Recognizing when a pattern has formed and aiding efficient
formation of such a pattern is essential for these algorithms. To
recognize repeating patterns, the state of the schedule at every
previously scheduled instruction is maintained. The state of
the schedule at a specific instruction represents the information
specifying what resources are available to schedule instructions
in succeeding instruction slots. When the current state matches
one of the previously encountered states, this indicates that there
might be a repeating pattern in the schedule. Maintaining and
comparing these states has been a complexity issue. In [4], the
authors simplify the state comparison problem by hashing the
states and comparing the current state with only those previous
states with an identical hash value. But still states correspond-
ing to every hash value need to be maintained in the proposed
techniques.

Our algorithm takes a different approach in constructing the
schedules and finding repeating schedules. To detect repeating
schedules, instead of maintaining and comparing with the pre-
vious states of the scheduler while scheduling each instruction,
we create a string of identifiers. In addition, each identifier rep-
resenting the scheduled instruction sequence between two back-
ward branches, and not the complete state of the machine. If the

same schedule (string pattern) occurs over and over again, then
the schedule has converged given the resource constraints and
latencies and we can use this to find the kernel.

2.2 Hardware-Based Trace Scheduling
The trace cache [5, 14, 15, 20, 23] stores traces of frequently
executed sequences of instructions into physically contiguous
memory locations. These traces can be formed in a fill unit
which receives the sequence of committed instructions. While
forming these traces in the fill unit, dynamic regrouping of in-
structions can be performed. Optimizations that can be applied
include re-association, constant propagation, instruction collaps-
ing and instruction scheduling which are much less aggressive
when compared to the technique we are exploring in this paper.

Franklin and Smotherman [13] also proposed using a fill unit
to dynamically compact the stream of retired scalar instructions
into VLIW instructions. They would then store the individual
VLIW words in a shadow cache to be used in the future. The ma-
jor difference between this technique and ours is that they store
single VLIW instructions in the shadow cache, not addressing
the fetch bottleneck. Also caching on a single VLIW word ba-
sis limits the amount of parallelism that could be extracted when
compared to having larger units for caching.

An efficient way to implement various instruction schedul-
ing techniques dynamically is the instruction path co-processor
(ICOP) concept [9]. ICOP is a programmable on-chip co-
processor that operates on the host processor’s instruction stream
to transform them into a new schedule to enable more efficient
execution. It is located off the processor critical path which
makes it ideal for implementing dynamic backend optimizers
when combined with its flexible nature. The notion of introduc-
ing a co-processor to the back end of the pipeline so that it could
exploit code reuse while not interfering with the critical path of
the host processor is the motivation for the co-processor imple-
mentation of our scheduling algorithm, which is one of three
implementations we examine.

Nair and Hopkins [18], introduced the Dynamic Instruction
Formatting (DIF) cache to perform aggressive code scheduling.
In the DIF paradigm there are two execution cores on the chip:
the primary engine, which is a simple in-order processor, and the
parallel engine which is a fast VLIW core acting as an acceler-
ator executing dynamically scheduled groups of instructions(i.e.
VLIWs). The primary engine’s main role is to train the parallel
engine as described below. Additionally, its secondary function
is to act as a fall back mechanism to process unexpected events
such as exceptions. As we will explain in subsequent sections,
the notion of falling back to the simpler mode of operation to
implement precise exceptions or recover from branch mispredic-
tions is used within our adaptive scheduling framework as well.
However, we do not rely on a faster execution core to achieve
speedups. We have a single in-order core that is fed from one of
two different instruction streams (I-Cache or CT-Cache) based
on the mode of operation at a given cycle. The speedups we
achieve are strictly attributed to the better scheduling of the orig-
inal instruction order.

Similar to the DIF cache, Black and Shen [7] developed
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the Turboscalar architecture which uses the Dynamic Instruc-
tion (DI) Cache . This cache is part of a technique to build wide
and shallow superscalar machines without paying the price of a
longer clock cycle time. The DI Cache is very similar to the DIF
cache, however, the underlying execution core is much more ag-
gressive (i.e. out-of-order superscalar core). Turboscalar utilizes
a single execution engine, which is fed from one of two different
pipelines in a given cycle.

The major difference between DIF and Turboscalar concepts
and our technique is the granularity at which the instruction
scheduling decisions are made. DIF and Turboscalar assume
maximum instruction windows of 48 or 16 entries respectively
to schedule instructions from. In contrast, our scheduling tech-
nique is more aggressive (i.e. analyzing instructions in the order
of hundreds), resulting in converged schedules along the same
vein as software pipelined loops. We allow aggressive forward
speculation along with scheduling across procedure calls and re-
turns. Aggressive speculation coupled with register windows en-
ables highly parallel schedules to be created. The success of our
converged trace scheduler depends on the size of the scheduler’s
available pool of instructions to be in the 100s to 1000s. In com-
parison, the largest DIF window of 48 instructions, while per-
forming aggressive speculation, cannot provide an aggressively
software pipelined schedule.

2.3 Handling Exceptions with Aggressive Speculation
In [11], Ebcioglu and Altman describe the essential architectural
features needed for aggressive speculation. They describe keep-
ing an additional exception tag bit, indicating that the register
contains the result of an operation that caused an exception for
each register. In this case, an instruction that was scheduled as
speculative will not cause an exception. Instead it sets the result
register’s tag bit, and the exception is propagated in this man-
ner through speculative instructions until the register is possibly
consumed by a non-speculative instruction. At that point, the
exception occurs. This allows moving loads above branches and
stores. They keep a non-speculative version of the load in its
original place to process the exception if one occurs.

In [19], Nystrom et al. describe a precise speculation tech-
nique that allows dynamic optimization systems to perform ag-
gressive code reordering and speculation while ensuring that ex-
ceptions are taken in their proper order. It does this by providing
a separate speculative register file to keep the results of specu-
lative instructions. With precise speculation, optimization and
code reordering can be applied beyond branch boundaries or ex-
cepting instructions.

3 Processor Overview
In this section we give a brief overview of the host in-order pro-
cessor core we assume. This processor has a dynamic optimizer
that implements our Converged Trace Scheduling algorithm.

3.1 High level Operation
Figure 1 shows the pipeline organization of our processor model.
Initially, instructions are fetched from the instruction cache.
Committed instructions from the in-order processor are indexed

into a CT-Schedule driver, which keeps track of backward loop
branches. The CT-Schedule driver decides when to start and stop
sending instructions to the scheduler to generate schedules for
candidate loops. The goal is to only schedule a small fraction
of the executed instructions, in order to keep the overhead of
dynamic schedule generation to a minimum.

In scheduling mode, committed instructions are collected
and scheduled by the CT scheduler. A converged trace sched-
ule is formed using our converged trace scheduling algorithm
described in Section 4. For dynamic creation of the Con-
verged Trace Schedules, the scheduling algorithm can be imple-
mented either in software running on the same or another pro-
cessor/context, or in hardware with a co-processor. We provide
results for both implementations in Section 8. When creating the
converged trace schedule, the scheduler takes into account the
architectural parameters used for the target in-order processor
such as cache hit latency, memory access latency, processor is-
sue width, number and type of functional units, etc. This enables
it to generate schedules optimized for the target architecture.

The newly formed converged trace schedules are stored in a
Converged Trace Cache (CT-cache) for future use. Each of these
schedules are associated with a trigger instruction, which is kept
track of in the Fetch Driver. When this trigger instruction is
the predicted as the next fetch block PC, the in-order processor
switches to trace mode and starts consuming instructions from
the CT-cache in the scheduled order instead of from I-cache.
The fetch driver is also responsible for predicting the next block
in the scheduled loop and for providing the next PC every cy-
cle. We remain executing in trace mode until (1) we leave the
scheduled code region, (2) a branch misprediction occurs, (3)
a memory mis-speculation occurs in the scheduled trace, or (4)
an exception is raised. When these occur, we return to in-order
fetch until we reach the next trace scheduled region.

3.2 Register Windows

Since the goal of the converged trace schedules created by our
scheduler is to significantly increase parallelism, the schedules
may need to increase the number of live registers to expose the
desired ILP. To accomplish this we use register windows, similar
to the approach used in [6, 18] to support aggressive hardware
instruction speculation. The execution of a loop branch from the
trace cache increments the active register window. Each regis-
ter window size is equal to the number of logical registers in
the ISA, similar to the original in-order core. The number of
register windows needed is the maximum number of loop iter-
ations we allow the scheduler to speculate across, plus one for
the default in-order execution (called RW-0). The in-order core
will use the register windows for the converged trace schedules
to expose more ILP. Because of these multiple windows, the ar-
chitecture needs to use a register map for operands to determine
which window to find their values in. Note that we do not have
to do register allocation as in an out-of-order processor, since the
renaming is provided automatically by the register windows (i.e.
there is no free register pool).
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Figure 1: Pipeline organization of the assumed in-order processor shown with additional functionality: Fetch driver, CT-Schedule
driver, CT-Cache that are needed to implement converged trace scheduler and enable the processor to use these schedules. The
register mapping stage drawn with dashed lines and a larger register file are the two main effects on the in-order core’s processor
for using the aggressive converged trace schedules.

4 Converged Trace Scheduling Algo-
rithm

In this section we describe our feedback-directed Converged
Trace Scheduling algorithm. These are called converged trace
schedules (CTS) because as we schedule over multiple iterations
of the loop, the resulting schedules tend to naturally converge to
a repeating pattern. The instructions corresponding to this re-
peating pattern constitute the kernel of CTS.

4.1 Algorithm Overview
The software pipelined Converged Trace Schedule (CTS) that
we create for a candidate loop contains only a kernel and a pro-
log. No epilog code is needed because of the hardware trace
mispeculation support that we have in our host processor. This
is described more in detail in Section 6.4.1.

In this section we describe how we generate the kernel and
prolog portions of CTS for a candidate loop. Figure 2 shows the
main steps in the scheduler to create converged schedule for a
candidate loop. Below is a high level summary of each compo-
nent of the algorithm, followed by sections that describe each in
detail:

• Schedule Window - An in-order trace of instructions result-
ing from the execution of multiple iterations of the candidate
loop is the input to our CTS algorithm. These instructions
are annotated with their register and memory dependency in-
formation and also with the information on their latency of
execution.

• ILP Scheduler - Similar to a scheduler in an out-of-order pro-
cessor, the ILP Scheduler aggressively schedules instructions
out-of-order over the instruction Scheduling Window using
a detailed architecture model. While scheduling, the sched-
uler adheres to additional rules which enables us to generate
schedules that converge to a recurring pattern.
This resulting scheduled trace is broken into what we call
Trace Blocks using taken backward branches as delimiters.
A Trace Block is a sequence of instructions between two ad-
jacent taken backward branches in this scheduled trace.

• Creation of Hashed Trace Patterns - As the trace blocks are
formed, they are hashed down to a unique ID. A hash function
is used such that every time when a trace block is formed with
the exact same sequence of instructions it will get the same
ID. This creates a sequence of IDs forming a trace string. This
is then passed to the pattern finder to search for recurring pat-
terns.

• Finding Repeating Strings - We used a modified version of the
Aho-Corasick [1] algorithm for finding consecutively repeat-
ing string sequences. When a pattern of IDs (trace blocks) re-
peat consecutively, we know that the schedule has converged.
The trace blocks corresponding to these repeating string of
IDs represent the kernel of a software pipelined loop.

• Forming Prolog for the Converged Trace Kernel - The con-
verged repeating sequence found above will need a Prolog
code sequence to start the initial iterations of the loop before
starting to repeatedly execute the kernel portion. Therefore,
a prolog block of instructions is created for the kernel and is
pre-appended to it to get the final trace.

• Converged trace compression - The final step of the schedul-
ing algorithm is to compress the kernel if needed. The kernel
may consist of repeating trace block patterns. In this case, a
fixed count loop is put around this trace block pattern. This
scenario is possible especially when we are generating sched-
ules for nested loops. Consecutively repeating trace block
patterns in the kernel, are reduced to one pattern, and the
number of times it repeats is recorded with the kernel to be
used by the trace cache fetch driver. The fetch driver will be
explained in Section 6.3.

• Trace output - For the dynamic implementations we examine
in this paper, information to trigger and execute the converged
trace is inserted into the fetch driver, and the converged trace
is stored in memory on a page reserved for dynamically gen-
erated code sequences.

4.2 Schedule Window
The input to our algorithm is an in-order trace of instructions re-
sulting from the execution of multiple iterations of the candidate
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Figure 2: Components of the Converged Trace Scheduling algorithm.

loop. In the case of dynamic optimization systems, this trace
is collected from the sequence of committed instructions in the
processor. For offline analysis it can be collected through pro-
filing or simulation. In fact, only the trace of branch PCs need
to be collected as the sequences of instructions executed can be
derived from this.

For a loop, we build up a large window (several hundreds) of
instructions to create a schedule from. Instructions are inserted
into this Schedule Window in-order from traversing the loop,
possibly for many iterations. The instructions are annotated in
the window with exactly how many cycles it will take to execute
the instruction, and with both register and memory dependency
information. We do not annotate register write-after-write and
write-after-read dependencies. This is not needed because dur-
ing scheduling, since we assume perfect register renaming which
is made possible by using register windows to support the spec-
ulative scheduling. This is described more in detail Section 3.2.

4.3 ILP Scheduler
The job of the ILP scheduler is to consume in-order sequences
of instructions from the schedule window and produce a trace of
scheduled instructions which will then be given as input to the
pattern finder. ILP scheduler schedules instructions similar to a
scheduler in an out-of-order processor. When an instruction is
brought into the scheduling window its dependences are hooked
up to its producing instructions. As dependences for instructions
get resolved they are scheduled greedily. They are then removed
from the schedule window out-of-order as they schedule, and
new instructions are brought into the scheduling window.

Following are the key features of our ILP scheduler that aids
in forming efficient schedules that would eventually converge to
a repeating pattern.

• A large schedule window of size 500 is used for choosing
instructions to schedule out-of-order. This is large enough to
hold a single instance of the largest loop body we observed
for the programs we studied (see Table 1).

• All branches are kept in original program order. A branch
is not allowed to be speculated and scheduled above a prior
branch.

• Speculation is controlled in order to generate a schedule that
converges faster to a repeating pattern and is smaller in terms
of the number or loop traversals it represents. This is achieved
by limiting the number of branches, say X , that any instruc-
tion can be speculated above. An instruction can be scheduled
only if the X th preceding branch has already been scheduled.
Note that this also implies that all of the branches before the
X th prior branch have also been scheduled, since branches

are scheduled in original program order. One has to care-
fully choose X , as a smaller value would mean that the sched-
ules are less aggressively speculated, which in turn limits the
scope for optimization. In the results in this study, we set X
to six.

• Aggressive memory speculation is allowed moving loads
above stores that were found to have independent addresses
in the trace of instructions given as input. We assume hard-
ware support, described in Section 6.4.2, to detect speculation
violation during execution and recover from it.

• It is necessary to eliminate non-determinism to generate con-
verged schedules. Hence a latency for each load is individ-
ually chosen and that same latency is used for scheduling
throughout the loop’s scheduling. The loads are assumed
to finish their execution when that latency is up no matter
whether the load hits or misses in the cache in the original
in-order execution. This latency determines how far away the
first use of the load will be scheduled from the load.

• Reproducibility is a must for obtaining converged trace
schedules. Hence these schedules are generated by enforc-
ing the following important restrictions: (1) if a given set of
instructions have all of their dependencies met, they are is-
sued in instruction fetch order, (2) all load instructions are
assigned a fixed execution latency, and (3) speculation above
conditional branches and function calls/returns are limited to
a certain range, and (4) we do not start scheduling until the
scheduling window is full.

• We assume rotating register windows, as described in the
prior section, so during scheduling we assume perfect register
renaming.

4.3.1 Load Scheduling
The ILP Scheduler schedules a load either as a hit or a miss with
a fixed latency. This is enforced by fixing the execution time for
a given load instruction throughout the whole process of trying to
generate a converged trace. This means that the load is assumed
to take N cycles in the scheduler to execute no matter what the
real latency is during a scheduling period.

Two straightforward choices to examine for a load is to
schedule it as a hit, where N equals the hit latency, or as a miss
all the way to main memory where N is equal to the main mem-
ory latency. The latter case, allows as many independent instruc-
tions as possible to get between the load and its first use (pending
the limits on speculation described above), before that first use
is scheduled. This can be advantageous because a stalled first
use in an in-order processor will stall the pipeline until the load
comes back from the memory hierarchy. A drawback of delaying

5



the instructions that depend on the load is potentially impeding
with the critical path. Since loads are usually on the critical path,
instructions relying on them are also part of the critical path.

For the results in this paper, to decide on whether to sched-
ule a load as a hit or miss, we use a variation on a common
heuristic used by static schedulers in existing compilers, but ap-
ply it dynamically. Our scheduler classifies a load as critical if
P% of the instructions in the fetched window after the load are
directly or indirectly dependent upon the load. This identifies
loads that can clog the schedule and limit instruction level paral-
lelism if their uses are not scheduled as a load hit. We examined
a range of values for this heuristic. We found that classifying a
load as schedule critical, when at least 20% of the 100 instruc-
tions fetched after the load are directly or indirectly dependent
upon it, performed well for all of the programs examined. If a
load has this property, then the load’s uses are scheduled as if
the load hit in the L1 cache. If the load did not satisfy this crite-
ria, then its uses are scheduled as if the load misses all the way
to main memory. We examined many other heuristics, from us-
ing dynamic sampling of the actual load latency to other static
heuristics, and found that the above static heuristic consistently
performed the best.

This heuristic is similar to one proposed by Kerns and Eg-
gers [16], where they scheduled instructions based on an esti-
mated amount of load level parallelism in the program. They
calculated load level parallelism as the number of instructions
that may execute in parallel with each load instruction.

4.3.2 Register Windows and Assigning Register Window
Offsets

Since we scheduled the trace of static instructions only obey-
ing true read-after-write dependencies, we need to deal with the
conflicts due to false register dependences. To deal with this, we
assume register windows in the target architecture to provide an
efficient form of register renaming/allocation for our converged
schedules.

For each instruction, we keep track of the number of loop
branches the instruction was speculated above. This may be
from 0 to the maximum branch speculation depth. The offset
(number of speculated loop branches) is stored with each instruc-
tion as it is scheduled by the ILP scheduler. This offset will be
used to indicate which future register window to store the regis-
ter value in, since the speculative instruction is coming from a
future loop iteration.

When a register definition from the trace cache is executed,
it assigns its definition to the register window defined by adding
the current instruction window number to this future register
window offset. This effectively stores the register definition in
the register window corresponding to the loop iteration where
the instruction was speculated from. The idea here is for spec-
ulated instructions to store their values in the register window
belonging to the loop iteration from which they came.

When processing instructions in-order from the instruction
cache (referred as non-trace mode), the processor performs all
of its writes to a default register window called register window
zero (RW-0). For an instruction to determine where in the reg-

ister file to obtain its operand input values, it must read a reg-
ister map (see Section 3.2), to determine if the register defini-
tion comes two possible locations. From either RW-0 (default
in-order window), or the current instructions future register win-
dow. If the register definition is to come from a register win-
dow other than RW-0, the register window offset of the current
instruction is added to the current/active register window to de-
termine what future register window to read the value from. In
non-trace mode, the register map will point to the exact window
to find the register in (RW-0 or the last valid register window
used by the converged trace schedule). This ensures correct reg-
ister values are read when we have terminated fetching from the
converged trace cache. To update the map correctly for this, the
loop exiting branch has a mask associated with it in the trace
cache indicating what the live out registers are. The register map
is then correctly updated when we pay the branch misprediction
penalty for kicking out of the trace cache.

4.4 Creating Trace Hashed Patterns
As the scheduled instruction sequences are produced, the se-
quences are divided into trace blocks. A backward branch marks
the end of a trace block, and the very next scheduled instruction
marks the start of the next trace block. As the scheduler pro-
duces each trace block, we hash the PCs corresponding to the
instructions in the trace block to create an ID to represent that
trace block. A hash function is used, so that the same sequence
of instructions in a trace block will produce the same ID. The
hash function we use consists of a set of shift and xor operations
accumulating over every instruction in the order they appear in
the trace block.

The string of trace block IDs are then fed to the next stage to
find converged patterns. For every unique ID, its corresponding
trace block needs to be stored in a cache. Later when a repeating
pattern of IDs is found, trace blocks corresponding to that pattern
are retrieved from this cache and the kernel is constructed. As
mentioned earlier, a trace block can be retrieved by storing just
the sequence of branches in the block.

4.5 Finding Converged Trace Block Patterns
Our algorithm is derived from the string matching algorithm of
Aho-Corasick [1]. The aim is to find a sequence of trace blocks
that repeat consecutively. We create a tree for each unique trace
block ID encountered, with this ID as the root. Each tree keeps
track of patterns that start with its root ID and traversing it from
its root to one of its leaves gives us a pattern that had occurred
in the past. Also the frequency of the patterns are tracked. On
every input of trace block ID, all the trees that are in the work-
ing set are updated to keep track of patterns. A tree will be in
the working set if the previous ID encountered is part of some
pattern represented by the tree. Trees might contain loops to ef-
ficiently capture repeating sub-patterns. The depth of the tree is
not allowed to exceed fifteen, as it is highly unlikely for there to
be repeating patterns with more than fifteen unique trace blocks.
At the end of the scheduling interval, all the trees are parsed to
find the patterns that have occurred most frequently. If we man-
age to find a consecutively repeating pattern, then the resulting
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pattern is the kernel. We call the resulting schedule a Converged
Trace Schedule (CTS). Later we’ll see that such highly efficient
schedules are possible for programs with regular loops.

When we don’t manage to find a consecutively repeating pat-
tern, we choose the pattern that occurs most often in the col-
lected trace. We refer to such schedules as Pattern Trace Sched-
ules (PTS). For programs with irregular control flow, this type of
schedules are more frequently observed.

4.6 Converged Schedule Prolog Formation

For each converged trace segment, we create a trace prolog if
needed. A prolog is needed if the converged schedule is a soft-
ware pipelined loop consisting of instructions that were brought
into the kernel from multiple iterations away. Let us say we have
an instance of an instruction in the kernel which occurs N itera-
tions later in the original in-order trace. For such an instruction,
we need to make sure that its instances belonging to N − 1 prior
iterations are in the prolog in order to start using the kernel with-
out violating dependency constraints. Thus this value N − 1 for
an instruction specifies the number of instances required for that
instruction before entering the kernel.

If the kernel contains multiple iterations of the loop, then
there will be multiple instances of each static instruction in the
kernel. For example, if the kernel contains three iterations it will
have three instances of the same static instruction. Let us say,
these three instances in the kernel originally belongs to N , N+1,
N +2 iterations (it can be noted that these have to be consecutive
iterations) ahead in the in-order trace. Here too, we just need to
make sure that we have N − 1 instances of the instruction in the
prolog.

The following are the steps we used to build the prolog:

• We first calculate the value N for each static instruction in the
converged trace schedule (kernel). This is easily calculated,
since we know for each instruction how many loop branches
it was speculated above from the register window offset. In
the case when the kernel contains multiple loop iterations,
there will be multiple instances in the kernel for a static in-
struction. The value N for the static instruction will actually
be the value N of the first instance of the static instruction in
the kernel.

• We next calculate value L as the maximum of the N−1 values
for all of the instructions in the kernel.

• The prolog is then simply formed by walking over the instruc-
tions in the order in which instructions were scheduled in the
converged trace schedule. This is done L times, decrement-
ing L at the start of each kernel iteration. At each step, if
the N − 1 count for an instruction is greater than L, then an
instance of the instruction is added to the prolog. When L
equals zero we will have finished construction our prolog for
the kernel.

The same method used above is also used to create a prolog
block for a pattern trace schedule.

5 Converged Trace Scheduler Imple-
mentations

In this paper, we evaluate the efficiency of our converged trace
scheduling algorithm described in the previous section by imple-
menting it as part of a dynamic optimization system. As men-
tioned in Section 1, we have 3 implementations for such a dy-
namic optimizer that implements our scheduling algorithm, each
at different points on the cost vs. performance curve. These are:

• Serial Software Implementation - Here the scheduling algo-
rithm is implemented in a separate compilation thread that
shares the same processor/context as the executing program.
Therefore, the scheduler will compete directly for hardware
execution resources, and it is vital that we come up with the
smallest/fastest schedule possible for each converged loop.

• Parallel Software Implementation - For this implementation
we model the compilation thread running on a separate pro-
cessor on a multi-processor chip. Therefore, the delay for
creating a schedule is the time it takes to communicate the
trace (in compressed branch history form) to the compilation
thread, and generate the schedule.

• Co-processor Implementation - In this implementation we as-
sume a dedicated co-processor along the lines of ICOP [9]
is used to generate the schedule. We developed a pipelined
implementation of the algorithm, which results in a reduced
scheduling delay when compared to the parallel software ap-
proach.

In each of these cases, the processor is not allowed to use the
converged trace schedule traces until they are fully generated and
stored in memory. We evaluate the performance of these various
implementations in Section 8.

6 Hardware Support for Converged
Trace Formation and Execution

Section 3 gave an overview of the architecture to create and
use Converged Trace Schedules. In this section we describe the
hardware support needed to execute the converged traces in more
detail. The components of our architecture include:

• Converged Trace (CT) Schedule Driver - Determines candi-
date loops for which schedules need to be formed and thus
determines when to start and stop converged trace scheduling
algorithm.

• CT-Cache - The CT-cache is a first level cache that stores the
converged trace schedules.

• Fetch Driver - Decides when to enter trace mode and start
fetching from the CT-cache. When in the trace mode, the
in-order processor consumes instructions from the CT-cache
instead of the I-cache. The fetch driver also provides nextPC
and next block information to drive fetch, and helps the mem-
ory system to prefetch instructions into CT-cache.
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6.1 CT-Schedule Driver
CT-Schedule driver is responsible for determining candidate
loops for which converged trace schedules need to be created.
It also determines when to start and stop collecting the trace of
instructions that are needed to schedule the candidate loop.

We try to generate converged trace schedules only for loops
that are executed frequently. Each loop can be identified by the
backward branch that guards it, which we call a Loop-Branch. In
the CT-Schedule driver, for every Loop-Branch we keep track of
its frequency count, which is the number of times it is executed.
In addition, we keep track of the maximum number of times
it was taken in a row, which is stored as its trip count. If the
frequency and the trip count values for a Loop-Branch are above
certain thresholds, then the corresponding loop is a candidate for
which a converged trace schedule can be built. For the results in
this paper, we use a frequency threshold of 50 and a trip count
threshold of 5.

We make a transition into the scheduling mode upon en-
countering a backward branch that has become a candidate loop
branch. This starts the scheduler algorithm described in Sec-
tion 4 and the trace of committed instructions is given as its in-
put. We switch back to non-scheduling mode either (1) when the
loop branch is not-taken, or (2) when it has iterated for more than
a threshold time, which was set to 60 for our simulations, or (3)
when we have found a converged schedule. Once we have tried
to form a converged schedule for a loop, we set the “CT-Tried”
bit to ensure that we no longer attempt to generate converged
schedules for that loop in future.

6.2 Memory System
Once a converged trace schedule is created, the schedule is mem-
ory backed to a set of virtual pages dedicated for holding these
schedules. The CT-cache acts as a first level cache from which
instructions are consumed by the in-order processor in trace
mode. We model a cache of size 8KB, which was large enough
to hold our largest trace. As execution transitions between dif-
ferent phases of program execution resulting in the execution of
different loops, there may be misses in CT-cache when we start
to use a particular trace. To eliminate such misses, we use a
next-line prefetcher for the CT-cache. Prefetching is very accu-
rate, since the code for the converged trace schedule is sequen-
tially fetched and executed until there is a backwards branch to
re-execute the converged schedule.

6.3 Fetch Driver
The Fetch Driver maintains a table of trigger instructions that is
updated when the schedules are formed. In the non-trace mode,
the fetch driver monitors the instructions going into the proces-
sor from the I-cache. If an instruction is found in the trigger
table, then we switch to trace mode. While in trace mode, the in-
order processor consumes instructions from the CT-cache. The
fetch driver also predicts the next fetch address in the CT-cache.
This can be easily calculated by adding a constant stride to the
current fetch address except when we are at the end of a trace
block. At that point, one has to determine the next trace block
to be executed. Since we compressed consecutively repeating

sub-patterns in a trace into one code sequence, we need to know
how many times that trace block pattern needs to be executed.
To solve this, when the converged trace is created, a next block
predictor entry shown in Figure 3 is allocated. The tag is the
PC of the branch ending the repeating sub-pattern, and the target
fetch address is also stored. In addition, we record the frequency
(numberiterations) of the sub-pattern we compressed with the
entry. Each time there is a hit in the next block predictor, we pre-
dict the target address until the current iteration count equals the
number of iterations. If there is a hit, and these two counters are
equal, then the fall through address is predicted and the current
count is reset to zero.

The last branch in the kernel is also stored in the next block
predictor, with a target address pointing to the start of the ker-
nel. The main difference is that the number of iterations for this
branch is set to infinity. So if there is a hit, we always predict
taken, until we have a mispeculation.

6.4 Exiting From a Trace
We switch back to in-order mode when we encounter any one of
the following conditions: a branch misprediction, an exception,
a memory order violation, or an exit from a trace region. When
this occurs, the register map has to be restored to the state of
the last branch is committed, and fetch is switched to in-order
instruction cache fetch. In this case, the register map will most
likely reference definitions in the last non-speculative register
window, and new definitions will use registers in the RW-0 as
described in Section 4.3.2.

6.4.1 Software Pipelined Loop Trail Off
An interesting feature of our design is that it obviates the need
for an Epilog for the converged software pipelined schedules.
We keep executing out of the trace cache until we mispredict a
branch in the converged schedule or mispredict the branch sig-
naling the end of the loop. Extra instructions from non-existent
future iterations executed because of software pipelining do not
update non-speculative state. Their register values will be writ-
ten to a future register window that will not be used. At the time
of misprediction we return to in-order mode executing the fall-
through path of the loop.

6.4.2 Memory Order Checking
We make sure that the in-order core checks for memory aliasing,
and stops using the trace schedule if a violation is detected. This
is achieved by implementing a small disambiguation checker
that is indexed with the effective address of load and store oper-
ations. Note that we only need to keep track of loads and stores
issued within a sliding window of 6 conditional branches (i.e. as
far back as we allow speculation to occur). On an address match
between a load and a store, the checker can determine the order
they should have occurred from their iteration numbers. This
tells the checker if the memory instructions belong to different
iterations of the loop, or to the same iteration of the loop. Upon
detecting a violation, the checker forces the termination of trace
mode and recovers the register map to that after the branch pre-
ceding the earlier of the two conflicting instructions. Execution
resumes in in-order mode after this.

8



Instruction
Queue

COMMIT

Reg File Functional
Units

I-Cache

CT
Cache

D-Cache

2:1
MUX

Decode &
Dispatch

Scheduler

Memory
hierarchy

Fetch
Driver

Prefetcher

StartPC Start Addr Trace Length

NextPC

Trace scheduling trigger

Sub-pattern tag #Current Iteration#Iterations

Next Block Predictor

LoopBranchPC CT tried Trip count
Trip count > T

ON/OFF

CT Schedule Driver

Fetch Driver

Reg Map

Target addr

Figure 3: In-order processor with additional hardware components added to create and use converged schedules. Fetch Driver and
CT-Schedule driver are shown in detail.

7 Methodology
We make use of detailed cycle accurate simulation in this study
to analyze our approach. The simulator used was derived from
the SimpleScalar/Alpha 3.0 tool set [8], a suite of functional
and timing simulation tools for the Alpha AXP ISA. The tim-
ing simulator executes only user-level instructions, performing
a detailed timing simulation of a dynamically scheduled micro-
processor with two levels of instruction and data cache mem-
ory. Simulation is execution-driven, including execution down
any speculative path until the detection of a fault, TLB miss, or
branch mis-prediction.

To perform our evaluation we collected results for selected
programs from SPEC 2000 integer and floating point bench-
marks. All programs were compiled on a DEC Alpha AXP-
21164 processor using the DEC FORTRAN, C or C++ com-
pilers under OSF/1 V4.0 operating system using full compiler
optimizations (-O4 -ifo). At -O4 -ifo, these DEC com-
pilers do very aggressive optimizations like procedure inlining,
loop unrolling etc., at the cost of increased code size. For
the programs where loop unrolling was disabled, we used -O4
-ifo -unroll 1 flags.

To attain reasonable simulation times, we executed a single
100 million instruction simulation point for each program. The
simulation points to achieve representative results of the whole
program were obtained by using the SimPoint [24] tool.

7.1 Baseline Architecture
Our baseline simulation configuration models a current in-order
processor microarchitecture. We have selected the parameters
to capture underlying trends in microarchitecture design. The
processor may fetch and issue up to 4 instructions in-order per
cycle. It has a 64 entry commit buffer with a 32 entry load/store
buffer.

In the baseline architecture, there is an 8 cycle minimum
branch mis-prediction penalty. The processor has 4 integer ALU

units, 1-load/store unit, 1-FP adder, 1-integer MULT, and 1-FP
MULT/DIV. The latencies are: ALU 1 cycle, MULT 3 cycles,
FP Adder 2 cycles, FP Mult 4 cycles, and FP DIV 12 cycles.
All functional units, except the divide units, are fully pipelined
allowing a new instruction to initiate execution each cycle.

We rewrote the memory hierarchy in SimpleScalar to better
model bus occupancy, bandwidth, and pipelining of the second
level cache and main memory. The L1 instruction cache is a 16K
4-way associative cache with 32-byte lines. The baseline results
are run with a 16K 4-way associative data cache with 32-byte
lines. A 128K unified 4-way L2 cache is also simulated with
64-byte lines. The L2 cache has a latency of 12 cycles. The
main memory has an access time of 200 cycles. The L1 to L2
bus can support up to 8 bytes per processor cycle whereas the
L2 to memory bus can support 4 bytes per cycle. The instruc-
tion cache makes use of next-line prefetching [25] to exploit the
spatial locality.

8 Results
This section first presents some statistics on each trace generated
by the converged trace scheduling algorithm. Then we compare
the amount of speedup obtained by our converged trace sched-
ules to that of single pass trace scheduling approach.

8.1 Converged Trace Schedule Statistics
Table 1 presents statistics gathered from the Converged Trace
Schedules (CTS) formed. For example, the Table shows that
the 1st converged loop in galgel consisted of 6 trace blocks,
the trace blocks had a recurring pattern of (ABCD(E)2)∗, and
the loop covered 20% of the executed instructions for the given
input. The original loop consisted of only 17 static instructions,
and the final converged trace schedule had 96 static instructions
in its prolog and 102 static instructions in the kernel. To find the
converged schedule, our scheduling algorithm had to schedule
only 2,142 instructions.
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Program IPC # TB # Static Insts Prolog length Kernel length % Coverage # Dyn Inst Patterns

applu-ref 0.38 1 452 902 452 43.43 15368 (A)∗
art-110 0.12 6 88 499 528 16.5 5632 (ABCDEF )∗

6 88 478 528 12.6 5456 (ABCDEF )∗
6 14 74 42 17.2 448 (ABC2D2E)∗

bzip-graphic 0.888 5 24 56 108 59.02 1968 (ABC(D)2)∗
crafty-ref 0.602 none
galgel-ref 0.623 6 17 96 87 20.4 2142 (ABCD(E)2)∗

11 16 90 107 19.7 1600 (AB(C)4AB(C)3)∗
gap-ref 0.601 3 9 48 19 12.9 648 (A2B)∗
gzip-random 0.643 2 218 416 562 33.2 9156 (AB2CD)∗
lucas-ref 0.602 3 150 447 450 98.3 7500 (ABC)∗
mcf-ref 0.056 5 31 73 92 91.9 820 (AB(C)2D)∗
mgrid-ref 0.568 6 73 432 396 36.7 4380 (AB(C)2DE)∗

6 72 426 391 7.9 4320 (AB(C)2DE)∗
6 16 90 85 6.1 960 (AB(C)2DE)∗
6 8 42 41 2.0 480 (AB(C)2DE)∗

perl-diffmail 0.681 none
swim-ref 0.48 2 462 922 924 93.2 19404 (AB)∗
twolf-ref 0.365 none
wupwise-ref 0.801 6 87 218 273 23.3 2472 (AB2CD2E)∗

Table 1: Statistics describing the generated converged traces schedules (CTS). Results are shown for the number of trace blocks
(TB) in the schedule, static number of instructions in the original loop, prolog and kernel lengths of trace formed, percentage of
executed instructions consumed from the trace, dynamic number of instructions sent to the scheduler, trace block pattern of the
trace. If more than one loop for a program are trace scheduled they are shown on separate lines.

Several observations can be made from the table. First, one
can observe that we are able to identify complex patterns in the
converged traces through our string matching algorithm. It can
also be noted that for some of the traces, the kernel length is not
a multiple of the corresponding static size of the loop. This is
because we don’t include paths that are not taken in the schedule
and we perform inlining. In addition, we compactly represent
the kernel through our compression algorithm. Another trend
that is striking is the number of static instructions in the original
loops. Some integer programs like crafty, don’t have loops
with high trip counts and hence they don’t have any converged
trace schedules.

8.2 Single Trace Block Scheduling

In addition to our converged scheduling algorithm, we also im-
plemented a baseline algorithm that is close to traditional trace
scheduling and the algorithm used in the DIF cache [18] im-
plementation mentioned in Section 2. We call this the Trace
Scheduling (TS) Algorithm. To build these traces, we use an out-
of-order scheduler to generate single path trace schedules. But
instead of generating schedules for multiple iterations and find-
ing patterns in those schedules, here the final schedule is formed
by scheduling only one trace block (that is, a trace through one
loop iteration). In addition, we limit the scheduling window size
is limited to 64 instructions.

Figure 4 shows the percentage of executed instructions
that came from the different schedules formed for using Trace
Scheduling (TS), Converged Trace Schedules (CTS), and CTS
with Pattern Trace Schedules (PTS) as described in Section 4.5.
PTS represents the frequent trace block patterns found for loops
that did not converge. The results show that even with a few
traces we are able to cover 52% of execution of these programs
on average.
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Figure 4: Percentage coverage of program execution from the
various trace scheduling techniques.

8.3 Non-Loop Unrolled Results
Loop unrolling is an optimization done by the compiler for ef-
ficient scheduling. Since we concentrate on generating efficient
schedules for loops, here we show how our converged schedul-
ing technique is able to achieve the same performance benefit as
compiler loop unrolling. These binaries for this one result were
compiled with -O4, but with loop unrolling turned off.

Figure 5 shows the IPC for in-order execution of binaries
generated without loop unrolling (W/O LU-Inorder) and com-
pares it with trace scheduling (W/O LU-TS), converged CTS and
also CTS with PTS combined. It can be seen that converged CTS
does a good job in achieving similar performance as loop un-
rolling performed by the compiler. For gzip and wupwise,
CTS does not provide a lot of benefit because of the irregu-
lar control flow in these applications. In comparison, applu
achieves nearly 19% speedup using converged CTS alone even
though the schedule covers only 43.3% of instructions executed.
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Figure 6: Percent speedup over baseline in-order architecture
for serial thread model.
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Figure 7: Percent speedup over baseline in-order architecture
for parallel thread model.
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Figure 8: Percent speedup over baseline in-order architecture
for coprocessor model.

This can be compares favorably to the 4% improvement due to
single pass trace scheduling even though it covers nearly 90% of
instructions executed as shown in Figure 4.

8.4 Loop Unrolled Results
We now report results using binaries generated with -O4 with
loop unrolling optimization enabled, and speedups are reported
over these baseline loop unrolled binaries. Figures 6, 7, and 8
show the percent speedup for serial, parallel and coprocessor
models that were described in Section 5.

Remember that all of the results are for an in-order processor
using instructions from either the I-cache or the CT-cache. The
speedups are calculated over the baseline in-order architecture.
In case of the serial model, the scheduling thread competes with
the main thread and hence incurs overhead. For baseline sin-
gle pass scheduling, this overhead is lesser than CTS and PTS
schedules. In spite of this, the converged scheduling algorithm
for the CTS plus PTS schedules obtains 12% speedup on an av-
erage when compared to that of 8% for the baseline TS. This gap
further widens for parallel and coprocessor implementations, as
performance of converged scheduling improves to 14% and 16%
respectively.

The results in Figure 8 show that we achieve as much as 91%
speedup from CTS schedules only for art in the coprocessor
implementation. This performance is significant especially when
one considers the fact that only 48% of the instructions (not cy-
cles) executed were from CTS schedules for art. We achieve
this through efficient scheduling of instructions, especially load
instructions. Also from Figure 8 we show that programs like
perl, for which a converged trace schedule was not created,
there is a 4% performance improvement from the PTS schedules
created. Here, the pattern trace schedules formed performed bet-
ter than the single Trace Schedule algorithm, which yields under
2% performance improvement for perl.

8.5 Sensitivity Analysis
We did experiments to evaluate the heuristics used in the ILP
scheduler. For the results reported in the previous sections, we
limited the number of branches that an instruction can be specu-
lated above to be 6. When we increased this to 10, we observed
a performance improvement for some benchmarks like galgel
and mcf by about 5%. But this came at the cost of increased

11



kernel and prolog lengths and also longer time for convergence.
Other benchmarks like applu, swim and lucas didn’t bene-
fit from this increased speculation as the number of instructions
between two branches in these benchmarks was very high and
as a result, the number of instructions spanning 6 branches was
already greater than our instruction window size of 500.

9 Conclusions
In this paper, we focused on generating software pipelined
schedules called Converged Trace Schedules (CTS). Our algo-
rithm aggressively schedules the in-order sequence of instruc-
tions resulting from the execution of multiple iterations of the
candidate loop. This scheduling is done assuming architectural
support for efficient register renaming and speculation recovery.
The resulting schedules are divided into trace blocks, which are
then converted into a string of IDs. The string of IDs are then
sent to a recurring pattern finding algorithm to recognize the ker-
nel of converged trace schedule.

We evaluate the efficiency of this algorithm by using it in
a dynamic optimizer for an in-order architecture. For the pro-
grams that we examined, less than 0.02% of the total number of
instructions in a program’s execution were used for generating
the converged CTS schedules. This 0.02% is with respect to the
100 million instructions we simulated. We expect the overhead
to be significantly smaller when it is amortized over the com-
plete execution of the program, which is typically on the order
of 100s of billions of instructions. The results show that creating
these highly specialized converged kernels achieved an average
of 12-16% speedup on the collection of programs we examined
depending on the implementation.

In this work we concentrated on using string matching to cre-
ate converged trace schedules for loops on-the-fly. These sched-
ules were tailored to the latencies and other characteristics of the
base architecture. It is possible to create these traces of schedules
offline by a simple, but detailed, simulator for the baseline ar-
chitecture. Then a compiler could include these trace schedules
in the binary, and during execution they can be loaded directly
into the converged trace cache and used. The processor can then
use these schedules, provided it has the additional hardware fea-
tures supporting speculation as described in this paper. Including
these specialized schedules into a compiled binary and directly
fetching them into a trace cache is a topic of future research.
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