
BitRaker Anvil: Binary Instrumentation for
Rapid Creation of Simulation and Workload Analysis Tools

Brad Calder Todd Austin Don Yang
Timothy Sherwood Suleyman Sair David Newquist Tim Cusac

BitRaker Inc.
San Diego, CA

www.BitRaker.com

Abstract
A wide range of ARM developers from architects, to compiler
writers, to software developers, need tools to understand, ana-
lyze, and simulate program behavior. For developers to achieve
high levels of system and program correctness, performance, re-
liability, and power efficiency these tools must be fast and cus-
tomizable to the problems at hand.

BitRaker Anvil is a tool building framework allowing de-
velopers to rapidly build tools to achieve these goals. BitRaker
Anvil uses binary instrumentation to modify ARM binaries for
the purpose of analyzing program behavior. BitRaker Anvil
equips the developer with an easy to use API that allows the
user to specify the particular program characteristics to analyze.
Using this API, the developer can create custom tools to per-
form simulation or workload analysis several orders of magni-
tude faster than using a cycle level simulator.

Prior binary instrumentation technology requires that analy-
sis code be merged into the same binary as the code to be ana-
lyzed. A key new feature of our binary instrumentation frame-
work is ReHost analysis, which allows an instrumented ARM
binary to make calls to analysis code that is written in the native
format of the desktop machine. Using this for cross-platform
ARM development results in analysis that runs orders of magni-
tude faster while simultaneously reducing the size of the ARM
binary images.

1 Introduction
BitRaker Anvil provides a framework (API) for building cus-
tom binary instrumentation tools for ARM to rapidly simulate
and analyze any program behavior you want. Our binary instru-
mentation framework provides the ability to automatically add
hooks to an ARM binary, which then trigger calls to analysis
code. A new binary is created with the instrumentation hooks
and analysis code. When a hook is encountered during execu-
tion, it invokes a corresponding analysis routine passing in pa-
rameters that provide information (e.g., effective addresses, reg-
ister values) about the current state of the program’s execution.
These analysis routines can then perform detailed simulation or
profiling.

1.1 Uses for Binary Instrumentation
Binary instrumentation has significant advantages for device and
chip architects, compiler writers, and software developers.

Device and Chip Architects. Binary instrumentation provides
an Architect with efficient design space exploration and work-
load characterization tools to make the best design trade-off de-
cisions early in the design cycle. In addition it allows an ar-
chitect the ability to rapidly build custom tools that target any
problem encountered in the design process. In order to produce
a chip that performs as efficiently as possible (in terms of time,
space and power) an architect must completely understand the
workload that the chip is being designed for. Without a solid
understanding of the target workload, an all too common result
is a chip that looks good on paper but that fails to perform at
the expected level when run with real applications. Performing a
thorough characterization of the workload should be done early
in the design cycle and binary instrumentation is a fast and sim-
ple way to complete this characterization even before a detailed
architecture model is completed.

As an example, an architect needs information such as the
workload’s instruction mix and common code sequences. This is
necessary to determine what instructions on which to focus hard-
ware optimization. In addition, since embedded processors typi-
cally focus on running a small handful of applications, knowing
the exact needs of those applications can yield significant im-
provements by guiding the development of hardware accelera-
tors. Another example of important workload analysis, is moni-
toring the memory footprint in order to implement a high perfor-
mance and adequately sized memory hierarchy in the processor.
All of this information can be gathered quickly and thoroughly
for the full workload’s execution using binary instrumentation.

Compiler Writers. Embedded software writers typically
spend a significant amount of time generating highly optimized
binaries. This optimization process often requires a profile to
be gathered and then fed back into the compiler to guide the
optimization. The profile often contains the most frequently ex-
ecuted control flow paths through the program’s execution [2],
as well as potentially identifying what parts of the program have
semi-invariant values to be specialized [3]. The BitRaker Anvil
binary instrumentation framework enables the building of binary
profiling tools to quickly and accurately gather these feedback-
directed profiles.

Software Developers. The BitRaker framework provides the
ability to quickly create custom programmer productivity tools.

These are tools a software developer can use to examine all as-
pects about their program’s execution including code coverage,
where time is being spent, memory usage, memory errors, power
usage, thread race conditions, and more. An example tool is a
hierarchical code profiler that reveals where time is being spent
in an application for the purpose of guiding program optimiza-
tion efforts. Another example is a tool that efficiently uncovers
memory leaks and memory access violations. We have built both
of these tools using the BitRaker Anvil framework and provide
them as commercial products. BitRaker Anvil provides you the
ability to quickly build such tools and then map the generated
information back to the source code, showing you exactly where
important events occur.

1.2 Advantage of Binary Instrumentation
Gathering the above mentioned information using binary instru-
mentation has several advantages over simulation and source
level instrumentation.

Source Level Instrumentation. Systems that are tied to
source code instrumentation for gathering profile information are
also tied to a specific language and often require a special com-
piler that can consume the inserted annotations. Using binary
instrumentation means that you are not tied to using a particular
compiler nor source code language to perform the analysis.

Furthermore, source code instrumentation systems require
that all of the source code is available for instrumentation. Often
times this is not feasible when, for example, third party and op-
erating system libraries are linked into the binary. Therefore, an
important advantage of binary instrumentation is that it makes
the whole program available for analysis, which includes being
able to instrument and analyze the impact from closed source
libraries.

Cycle Level Simulation. Most of the analysis described above
can be gathered by hacking a cycle level simulator. One of the
main advantages of using binary instrumentation is that it can
perform the analysis orders of magnitude faster than using a cy-
cle level simulator. Because of this increased analysis speed,
the whole program can be simulated and analyzed. This speed
increase makes it possible to analyze the entire execution of an
application. In comparison, due to the overhead of a cycle level
simulator less than 1% of the program’s execution can be ana-
lyzed, and this still takes more time than whole program analysis
with binary instrumentation. In addition, whole program analy-
sis with binary instrumentation will be significantly more rep-
resentative of the programs behavior, since it will see all of the
phases of the program’s execution [4].

Post Processing Huge Traces.Another path for gathering
some of this information is to generate huge traces on disk and
continuously post process those traces to gather statistics about
the program’s execution. Real programs run for many seconds,
minutes, or longer and execute billions or trillions of instruc-
tions. Storage of full trace information for such programs is dif-
ficult or infeasible. A key advantage of binary instrumentation

is that the analysis can gather aggregate statistics as the program
runs with only a small slowdown over the uninstrumented bi-
nary’s execution time. Then at the end of execution or after a
specified amount of time, the aggregate statistics can be written
out. In doing this, you no longer have to deal with large bulky
traces, and the information can still be gathered in a short amount
of time. This is typically how tools built with BitRaker Anvil are
used.

1.3 Paper’s Contributions and Outline
This paper presents the first binary instrumentation system made
available for the ARM platform. Section 2 describes how the
system works by building an example data cache simulator. This
section describes InHost instrumentation. This approach to bi-
nary instrumentation always links the analysis code into the orig-
inal binary providing a new instrumented binary.

A key new feature of our binary instrumentation framework
is ReHost instrumentation described in Section 3. ReHost is built
on the realization that for cross-platform ARM development
the instrumented image size and analysis performance overhead
needs to be kept small. It is therefore advantageous to keep the
analysis code and its data separate from the instrumented ARM
binary. Our ReHost solution keeps the analysis code and data
as an x86 binary. Then when an instrumented ARM binary ex-
ecutes a hook, the call is ReHosted to the x86 analysis binary.
Using this for cross-platform ARM development results in 10x
faster analysis and significantly smaller instrumented ARM bi-
nary images over the prior techniques. This is shown in Section 4
where we provide instrumentation and run-time overhead results
using the current BitRaker Anvil release. We then summarize the
paper in Section 5.

2 ARM Binary Instrumentation
We now describe in more detail the process of binary modifica-
tion, and some of the issues that must be dealt with to preserve
precise program behavior.

2.1 How BitRaker Anvil Works
BitRaker Anvil uses symbol information to read an ARM bi-
nary into an Intermediate Representation (IR) [1] and provides
a programmable API to allow developers to traverse over the IR
adding calls to the developer’s analysis routines. The Analysis
routines can be used to profile information or simulate structures
the developer is interested in. Thus a developer creates both an
instrumentation tool using the BitRaker Anvil API and an anal-
ysis shared library. Together the instrumentation and analysis
program constitute an ARM Analysis Tool, which can be used
over and over again to analyze the behavior of ARM binaries.

The tool developer starts by creating an instrumentation pro-
gram using the BitRaker Anvil API. The instrumentation pro-
gram takes as input an original binary and outputs a new instru-
mented binary. This instrumented binary, when run, will call the
analysis routines at the appropriate points to gather profile in-
formation or to perform detailed architecture simulation. This
process is shown in Figure 1. To illustrate the ease with which
BitRaker Anvil can be used to create an analysis tool, we will

Binary

Modify
Files

Adding
Calls to
Analysis

Binary
Instrumentation

Tool

Analysis Lib

BinaryBinary

Modify
Files

Adding
Calls to
Analysis

Binary
Instrumentation

Tool

Analysis Lib

BinaryBinary

Figure 1: The process of Binary Instrumentation.

describe how to use BitRaker Anvil to quickly create an ARM
Data Cache Simulator.

2.1.1 Creating the Instrumentation Tool
The developer begins by creating an instrumentation tool (shown
in Figure 1) using the BitRaker Anvil API to specify the type of
information the developer is interested analyzing. The BitRaker
Anvil API separates the user from the details of binary modifica-
tion allowing them to easily focus their study of the parts of the
program they care about. Building a tool with BitRaker Anvil
to perform analysis requires first identifying what information
a user wants to gather. The developer needs to then figure out
where in the binary (what IR structures need to be instrumented)
to gather this information.

What Information to Gather. A user first needs to decide
what type of information they want to gather. Is it information
about branches, control flow, memory references, instructions
counts, etc? Or are they trying to simulate the behavior of a part
of the architecture, like the data cache? For a cache simulator,
the memory address stream needs to be examined, and this is
accomplished by instrumenting every load and store instruction.
This dynamically tracks the effective addresses used during ex-
ecution.

What type of BitRaker Anvil IR Construct to Instrument.
Once you have determined what type of information to gather,
a user needs to decide what type of BitRaker Anvil IR construct
to instrument. For example, to instrument the memory address
stream you will be using the BitRaker Anvil IR Instruction con-
struct to attach hooks to load and store instructions. Then when
any load or store instruction executes the corresponding analysis
routine is called. If you want to track information about the pro-
cedure calls (e.g., a trace of procedure call invocations and their
procedure names), you would instrument the BitRaker Anvil IR
Procedure construct.

Where to Instrument the Program. Once you have decided
which type of IR structure to instrument, you need to decide if
you want to call your analysis routine before or after the structure
executes. You also need to decide if you want to instrument all
of the structures of that type or only select structures of that type.
For example, do you want to instrument all procedures, or only
trace a few select procedures to reduce the profiling overhead.
The BitRaker Anvil API provides the ability to easily specify all
of this.

Once you have made the above decisions, the process of cre-
ating a BitRaker Anvil tool consists of creating an Instrumenta-
tion Tool and an Analysis Library. The steps required to create
an instrumentation tool consists of:

1. Declare analysis function prototypes using the Create-
FunctionPrototype API, so that the instrumentation
tool knows what analysis routines to link the instrumentation
hooks to. For the cache simulator there are three analysis
routine prototypes shown at the start of Figure 2. These are
profile start, cache sim and profile end. These
routines are all defined and provided in the analysis library
the user will write. The rest of the arguments to the Cre-
ateFunctionPrototype routine specify the number of
parameters, and the types of each of the parameters.

2. Find all the instances of the type of structure (procedures,
basic blocks, or instructions) in the BitRaker Anvil IR where
you want to place the instrumentation calls to your analysis
routines. For our example, this is done by traversing over
all of the instructions and examining, which instructions are
of type load or store as shown by the for loop in Figure 2,
and then using GetInstFlag to determine the type of the
instruction.

3. Insert the instrumentation calls into the static executable. This
is shown with the InstrumentInst API in Figure 2. The
parameters specify which analysis routine to call, and what
parameters to pass to it. The example shows inserting an in-
strumentation hook before a load or store instruction. When
this hook is executed the corresponding analysis routine will
be dynamically called passing dynamic information (the ef-
fective address) and static (whether a load or store) to the
analysis routine for profiling. Note, the effective address has
to be dynamically calculated before it is passed to the anal-
ysis routine. The API knows to do this, since the argument
type was specified to be eAEFFADDR in the CreateFunc-
tionPrototype definition of cache sim.
Also shown in Figure 2 is that insertion of a function call
to func setup before the binary starts executing, and a
call to func finish when it finishes executing using the
InstrumentProject API. This allows the analysis code
to initialize its data structures, and to output to the file
datafile with the cache statistics at the end of execution.

4. The final step is writing out the new binary, which is shown
using the WriteObj function. When this function is called,
the new binary is created with the instrumentation hooks
added, and analysis code linked in.

Once the code is created to perform the instrumentation, it
is compiled using the BitRaker Anvil library to create an ARM
Instrumentation Tool for Windows or Linux. The input to this
tool will consist of (at the minimum) an ARM binary, and it will
output a new ARM binary with the instrumented hooks added.

2.1.2 Creating the Analysis Routines
The next step is for the developer to create the analysis routines
(for the library in Figure 1) to be called when the hooks execute.
These routines record or simulate the information being profiled

func_setup = CreateFunctionPrototype(project,
"profile_start", 0);

func_cache_sim = CreateFunctionPrototype(project,
"cache_sim", 2, eAEFFADDR, eACONSTWORD);

func_finish = CreateFunctionPrototype(project,
"profile_end", 1, eACHARPOINTER);

...

//call the func_setup analysis routine at start
InstrumentProject(project, eABEFORE, func_setup);

//traverse over all of the instructions in binary
for(SetFirstInst(bb, inst); !IsInstNull(inst);

IncInst(bb,inst))
{

//get the type of current instruction
EAInstFlagType inst_flag = GetInstFlag(inst);

//check the type of the instruction
if (inst_flag & eAIFLAG_Load) {

//add instrumentation hook for load
InstrumentInst(inst, eABEFORE, func_cache_sim,

eAEFFADDR, CACHESIM_LOAD);
} else if (inst_flag & eAIFLAG_Store) {

//add instrumentation hook for store
InstrumentInst(inst, eABEFORE, func_cache_sim,

eAEFFADDR, CACHESIM_STORE);
}

}

//call the func_setup analysis routine at end
InstrumentProject(project, eAAFTER, func_finish,

datafile);

WriteObjInHost(obj,newBinFileName,analysisLibName);

Figure 2: Instrumentation Code Using the BitRaker Anvil API
for Building a Cache Simulator.

void profile_start(void)
void cache_sim(unsigned long addr,

int accesstype)
void profile_end(char* outfile)

Figure 3: Corresponding Cache Simulation Analysis Routine
Definitions.

during the execution of the instrumented program. For the ex-
ample, an analysis routine for the cache simulator would take
as input a memory address (for a load or store) and initiate the
cache access. The analysis routine will be called by the hooks in-
serted into the binary during execution. With BitRaker Anvil, the
memory addresses seen during profiling are the same addresses
seen during the execution of the original uninstrumented binary.
For the cache simulation example, the analysis routine defini-
tions are shown in Figure 2.

2.1.3 Running the Tool and Instrumented Binary
When the instrumentation tool is run on the original binary
(shown in Figure 1), the binary is read into the BitRaker Anvil
IR. The IR is then traversed adding instrumentation calls (e.g.,
at every load and store) to the analysis routines (e.g., cache sim-

Program Text

Program Heap

Inst. Hooks

Shared Stack

Analysis Text

Analysis Heap

Program Text

Program Heap

Stack

Un-Instrumented

Original Program

Instrumented
w/ Original
Data Addresses

Program Text

Program Heap

Inst. Hooks

Shared Stack

Analysis Text

Analysis Heap

Program Text

Program Heap

Stack

Un-Instrumented

Original Program

Instrumented
w/ Original
Data Addresses

Figure 4: Layout in Memory of Original Program (left) and In-
strumented Binary (right).

ulator) to analyze the behavior of the program the developer is
interested in.

When instrumentation is finished, the instrumentation tool,
using the BitRaker Anvil API, writes out a new instrumented bi-
nary, which has been augmented with the instrumentation calls
to the analysis code. Then when the instrumented binary is run
the analysis information is gathered using the developer’s analy-
sis routines. When the program finishes execution, the analysis
code reports to the user the final results of the profile (e.g., the
data cache miss rate).

2.2 Preserving Precise Program Behavior

When using a binary instrumentation system for simulation and
workload analysis, it is important to be able to see the same orig-
inal data addresses in the instrumented binary as the original bi-
nary.

To achieve this, we must first understand how ARM binaries
are laid out in memory. ARM binaries place their code combined
with data starting at a low address in memory. The heap is then
placed after that and grows upward increasing in the memory
virtual address space as shown in Figure 4. Then the stack starts
at address 0x08000000 and grows down toward the heap.

BitRaker Anvil ensures for simulation analysis that the orig-
inal addresses are maintained by not moving the original global
data, heap, and stack. BitRaker Anvil inserts the instrumenta-
tion hooks, and the analysis code and data in between the origi-
nal heap and stack, ensuring that enough room is left for both of
them. This is shown in the right side of Figure 4.

If the instrumentation hooks or the analysis code need to use
temporary storage, it shares the stack with the thread. This is
preferred, since each thread has its own stack and stack pointer.
When execution transfers to the instrumentation hooks and anal-
ysis code, all data placed on the stack will be removed before
returning to the original executed instructions. This guarantees
that the stack is kept clean for the original instructions, and the
original code is none the wiser.

3 ReHost Instrumentation
In prior art [5], the analysis code and data is directly added to
the program’s address space being analyzed. We call this InHost
Instrumentation, since the analysis code lives within the original
binary. It is added by statically linking it in, or dynamically
inserting it into the binary. When an analysis call is invoked, the
thread that encountered the hook will only continue executing
when the analysis call returns. When the instrumented binary is
run natively on a machine with a lot of memory, this provides
efficient execution of the analysis code for instrumentation.

In the ARM embedded environment there are two key issues
that need to be addressed for binary instrumentation – (a) how to
keep the memory and execution footprints of the analysis code
and data low, and (b) Cross–platform ARM software develop-
ment using emulation on x86 desktop machines (as is most often
done) requires the emulation of analysis code, making the ap-
proach unusable. Both of these issues are addressed by using
our new ReHosted Instrumentation approach.

ReHosted Instrumentation is the process of taking an orig-
inal ARM binary and producing an instrumented ARM binary,
which has hooks added to it to trigger analysis calls, but all of
the analysis code and data is kept in a separate native x86 binary.
Figure 1 shows that InHost instrumentation links the analysis
code into an ARM binary. In comparison, ReHost instrumenta-
tion rehosts the analysis call by performing communication be-
tween the instrumented ARM binary and an analysis x86 binary.
The ReHost memory layout stores the analysis code and data in
a separate process address space, so it is does not exist in the
InHost memory layout shown in Figure 4.

3.1 ReHost Implementation
ReHost instrumentation works as follows:

1. ReHost Instrumentation - The instrumentation API is exactly
the same as with InHost described in Section 2. The only dif-
ference is that the writing out of the binary is done by calling
WriteObjReHost instead of WriteObjInHost. This
tells the BitRaker Anvil API to not link in the analysis code
and data, but instead link in a ReHost Communicator, which
will appropriately transfer the hooks to the analysis code.

2. Native Analysis Code - The instrumented ARM binary is kept
separate from the analysis x86 binary. This allows the bina-
ries of the user code and the analysis code to be of different
ISAs. The analysis code is compiled into an x86 shared li-
brary with the appropriate routines exported so they can be
called. This shared library is then dynamically loaded by the
ReHost Dispatcher when it starts up on the x86 machine. One
advantage of this is that the x86 analysis code can be built us-
ing any language supported on the x86 machine.

3. ReHosting the Hooks - When the instrumented ARM binary
executes either on a cross-platform emulator or on an ARM
board, a corresponding ReHost Dispatcher is running on the
x86 desktop machine. When an analysis hook is encountered
during ARM execution, the ReHost Communicator will trans-
fer the analysis routine ID along with any parameters to the
ReHost Dispatcher.

4. Processing Analysis Hooks - The ReHost Dispatcher on the
x86 side is responsible for interpreting the analysis routine ID
and parameters and performing the call to that routine.

The two main advantages of ReHost are that it keeps the
analysis overhead low and enables efficient cross-platform de-
velopment.

3.2 Keeping a Low Profile

For the ARM embedded platform it is important to keep the
memory and the execution time footprint of the analysis code
to a minimum. For example, hand held game developers trying
to analyze their product have only a small amount of memory
free to use for added instrumentation code.

Another important aspect is reducing the execution time
overhead. Ideally the analysis code should not not pause the
original program, while the analysis code chews on the data.
This is what happens with traditional binary instrumentation
techniques [5]. This can cause issues when using instrumen-
tation to perform very detailed analysis. For example, the game
developers can only tolerate a 33% slow down (going from 60
FPS down to 40 FPS) while performing the analysis. In addi-
tion, the ability to get useful information from hardware coun-
ters relies on the analysis code not interfering too much with the
execution time. Therefore, ReHosting is beneficial for providing
low perturbation of the performance data.

To address these issues, ReHost instrumentation keeps anal-
ysis code and data separate from the original binary and its ex-
ecution. There is no reason to keep the analysis code and data
in the same process, since it only consumes data from the hooks
in the original program’s execution. In addition, there is no rea-
son why the original program’s execution has to wait until the
analysis code is done processing the hook before it can continue
executing. Therefore, the analysis code and data can live as an
x86 binary, and have this data buffered and communicated to it
over a network link from the ARM board. This approach is en-
abled by ReHost instrumentation.

3.3 Efficient Cross-Platform Development

Another difference in the use of binary instrumentation for ARM
development is that a significant amount of ARM development
is performed cross-platform on x86 desktop machines. During
ARM software and hardware development, ARM binaries are
often run on a emulator or simulator that runs on a x86 machine.
Under these conditions, if one was to use binary instrumentation
and link the analysis code and data into the ARM binary, then
the analysis code and data would have to also be emulated. This
would result in a significant slow down and would prevent the
analysis of the binary from being practical for this type of cross-
platform development.

This problem is solved with our ReHost analysis, since all
of the analysis code and data are kept in an x86 binary, which
runs at native speeds. In fact, for cross-platform development the
analysis code runs so fast, in comparison to the emulated ARM
binary being analyzed, we can perform aggressive analysis with
only a 2 to 5 times slow down.

4 Cross-Platform Performance
In this section we examine the performance overhead of using
binary instrumentation for the following two applications:

� Instruction Count (IC) - This tool counts the total number
of instructions executed when running a binary. This is ac-
complished by adding an instrumentation hook to every basic
block, passing to the analysis code the number of static in-
structions in the basic block. The analysis code has a global
counter that accumulates the number of instructions, which is
written out when the application completes.

� Data Cache Simulator (CS) - This tool gathers data cache
simulation results (hits and miss rates), for a first level data
cache. This is accomplished by profiling every load and store
instruction as shown in Figure 2.

Results are gathered by running the ARM binaries on our
own instruction set simulator called BitRaker SimForge. Sim-
Forge is a ARM binary emulator that allows users to run ARM
binaries on Linux and Windows machines for cross-platform
development. Results are reported for ten common embedded
benchmarks, and the results compare the benefit of using Re-
Host instrumentation to InHost instrumentation.

Table 1 shows the increase in binary size due to binary in-
strumentation. The results show that ReHost instrumentation
only increases the binary size by 20 to 30%, whereas InHost
instrumentation increases the binary size 2 to 3 times.

Table 2 shows the execution time increase due to binary in-
strumentation. The results show that InHost instrumentation can
have significant performance overhead when performing cross-
platform development, because the analysis code has to be em-
ulated along with the original binary. For the InHost cache sim-
ulator, an additional 20x increase in execution time is seen on
average due to having to emulate the cache simulation each time
a load or store instruction is executed. In comparison, since the
ReHost instrumentation keeps all of its analysis code in an x86
binary, it does not suffer this overhead. The overhead for Re-
Host cache simulation is only a 2x increase in execution time.
By keeping the analysis in native format, ReHost instrumenta-
tion enables complex analysis to be performed with very little
additional overhead.

5 Summary
This paper presents the first commercial binary instrumentation
system made available for the ARM platform called BitRaker
Anvil. Binary instrumentation has a wide range of applications
for ARM developers, whether they are architects, compiler writ-
ers, or software developers. Binary instrumentation enables the
rapid creation of high speed profiling and simulation tools which
are useful in all manner of workload analysis and software de-
velopment.

We presented ReHost instrumentation, which keeps the anal-
ysis code and data in a separate x86 binary, and demonstrated the
importance of using ReHost instrumentation for cross-platform
development. We showed that complex analysis tools can be

Binary Orig IC-Rehost IC-Inhost CS-Rehost CS-Inhost
adpcm 44.5kB 1.23x 3.29x 1.28x 3.71x
crc32 39.2kB 1.23x 3.48x 1.29x 3.96x
forth 197.0kB 1.27x 2.27x 1.26x 2.49x
gsm 164.9kB 1.22x 2.13x 1.27x 2.56x
jpeg 344.6kB 1.17x 1.80x 1.24x 2.31x
mad 703.9kB 1.17x 1.71x 1.23x 2.12x
patricia 78.0kB 1.26x 2.77x 1.30x 3.19x
rijndael 100.3kB 1.12x 2.06x 1.38x 3.31x
susan 134.1kB 1.26x 2.43x 1.37x 3.23x
tiff 561.9kB 1.18x 1.76x 1.20x 2.03x
Avg 236.8kB 1.21x 2.37x 1.28x 2.89x

Table 1: Binary Size Increase. The original binary file size is in
kilobytes. The next two columns show the increase in binary size
when performing instruction count instrumentation for ReHost
and InHost. The final two columns show the increase in binary
size for ReHost and InHost for data cache simulation.

Binary Orig IC-Rehost IC-Inhost CS-Rehost CS-Inhost
adpcm 286.8s 2.35x 16.93x 1.59x 10.98x
crc32 124.9s 1.71x 9.60x 2.39x 25.64x
forth 186.2s 2.20x 14.04x 2.28x 21.72x
gsm 290.7s 1.88x 11.37x 1.54x 10.45x
jpeg 55.6s 1.83x 10.70x 2.20x 22.15x
mad 190.2s 1.33x 4.95x 2.28x 24.06x
patricia 222.5s 1.55x 7.81x 1.77x 16.17x
rijndael 244.1s 1.22x 3.46x 2.74x 29.85x
susan 37.9s 1.57x 7.85x 1.96x 18.85x
tiff 527.3s 1.91x 11.33x 2.09x 20.26x
Avg 216.6s 1.76x 9.80x 2.08x 20.01x

Table 2: Cross-Platform Execution Time Increase. The original
execution time in seconds on BitRaker SimForge. The next two
columns show the increase in execution time when performing
instruction count instrumentation for ReHost and InHost. The
final two columns show the increase in execution time of ReHost
and InHost for data cache simulation.

run in ReHost mode with only a factor of 2 slowdown over un-
instrumented binaries.

BitRaker Anvil equips it’s users with the ability to perform
static and dynamic analysis, and provides powerful building
blocks that users can combine to build new tools limited only by
their imagination. We encourage you to explore its advantages
for simulation, compiler profiling and programmer productivity
analysis.

References
[1] A. Aho, R. Sethi, and J. Ullman. Compilers principles, techniques, and tools.

Addison-Wesley, 1986.

[2] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Transactions on Computers, C-30(7):478–490, July 1981.

[3] T.B. Knoblock and E. Ruf. Data specialization. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion. ACM, January 1996.

[4] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char-
acterizing large scale program behavior. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, October 2002.

[5] A. Srivastava and A. Eustace. ATOM: A system for building customized
program analysis tools. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 196–205. ACM, 1994.

