
Dynamic Phase Analysis for Cycle-Close Trace Generation

Cristiano Pereira Jeremy Lau Brad Calder Rajesh Gupta

Department of Computer Science and Engineering
University of California, San Diego

{cpereira,jl,calder,gupta}@cs.ucsd.edu

Abstract

For embedded system development, several companies pro-
vide cross-platform development tools to aid in debugging, pro-
totyping and optimization of programs. These are full system
emulation systems that can emulate the final binary to be run
on the real board, its operating system and devices. Many of
these emulation systems do not provide cycle level information
due to the time consuming nature of cycle accurate simulation.

In this paper we propose a method to provide Cycle-Close
Traces of cycle-level statistics for the complete execution of
the program in orders of magnitude less time than perform-
ing full cycle accurate simulation, with an average error of
3.2%. Our approach uses dynamic phase analysis to gener-
ate targeted cycle-close simulation samples. Detailed simula-
tion results for these samples are used to produce fast cycle-
close traces during a program’s execution, so the user can also
watch, pause and debug the currently executing code and its
corresponding architecture performance characteristics at any
point during execution.

Categories and Subject Descriptors: B.8.2 Performance
Analysis and Design Aids, I.6.7 Simulation Support Systems:
Environments

General Terms: Performance, Design, Experimentation

Keywords: Simulation, Tracing, Phase, SimPoint

1. INTRODUCTION
The increasing complexity of embedded system design re-

quires efficient methodologies to speed up debugging, proto-
typing and performance/power estimation of both software
and hardware. To address this, several vendors provide cross
platform development tools for embedded environments. For
example, with these environments a developer can debug an
ARM application for Symbian [17] OS with I/O interfaces
for a cell phone using a specific ARM board, all running
in an emulated environment on an x86 machine. Existing
products that provide this functionality include tools from
Virtio [20], Virtutech [21], CoWare [2], Accelerated Tech-
nologies [1], Vast [19], and other companies. These tools

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

provide the ability to emulate a full embedded development
board along with embedded operating systems and I/O de-
vices. This allows the developer to debug and integrate the
actual binaries to be run on the real hardware all in an emu-
lated environment.

To make these full software emulation systems usable, the
products available [20, 21, 2, 1] provide near-native speed in-
struction set emulation. This is accomplished through dy-
namic binary translation methods such as just-in-time (JIT)
compilation and caching of translated code, as done in Em-
bra [22] and DynamoSim [7], or through compiled instruction-
set simulation [9, 11]. These techniques provide cross-platform
execution at nearly the same execution speed as running the
application on an actual embedded processor board. These
systems provide the user with the ability to pause execution,
and examine the currently executing code and its interaction
with devices. However, many of these tools lack cycle accurate
power and performance evaluation, because performing cycle
accurate simulation during the full program’s execution incurs
an unreasonable performance overhead [16]. In addition, this
overhead will increase by several orders of magnitude as em-
bedded processors become more complex and more difficult
to model.

The goal of our work is to quickly provide cycle-close traces
(run-time performance/power profiles) in these emulation sys-
tems. We use targeted sampling exploiting program repetition
to construct a complete performance trace of the whole pro-
gram’s execution without running the entire program through
cycle accurate simulation. We therefore call this a cycle-close
trace rather than a cycle accurate trace. A cycle accurate
trace comes from performing cycle accurate simulation of the
entire program’s execution. In comparison, cycle-close tracing
builds a performance trace of the entire program’s execution
from a handful of intelligently chosen cycle-accurate samples.
Cycle-close tracing provides accurate predictions of cycle level
metrics such as CPI, power consumption, number of cache
hits, branch mispredictions, etc. The fast and accurate cycle-
close power and performance estimates can be used to validate
and debug the functionality of the software, to guide software
optimizations, and to perform fast design space exploration of
new architectures.

We use phase analysis [14, 4, 15] to provide fast cycle-close
traces. Phase analysis has been used off-line to select simula-
tion points to significantly reducing simulation time. In this
paper, we use phase analysis to dynamically choose which
samples to simulate. This provides fast and accurate cycle-
close traces of the complete program’s execution from a small
number of samples. The phase analysis and trace is generated
as the program is emulated; no off-line analysis is required.

For the programs we examine, our approach is 312 times faster
on average, compared to fully simulated performance/power
traces, with 3.2% average error.

2. DYNAMIC PHASE CLASSIFICATION
In this section we discuss phase behavior, code signatures,

and we explain how the dynamic phase classifier works as
the program executes. Our work builds upon program phase
analysis techniques presented in [14, 15, 5].

Programs exhibit large scale repeating behavior called phase
behavior [14]. We use the dynamic clustering approach of
Sherwood et al. [15] to track phase behavior through the exe-
cution of branches. Our dynamic phase classifier assumes no
hardware support, and is implemented within the emulation
infrastructure.

To detect phases, a program’s execution is first divided into
contiguous non-overlapping fixed-length intervals. An interval
is a continuous portion of execution (a time slice) of a program
and a phase is a set of intervals within a program’s execution
with similar behavior, regardless of temporal adjacency. This
means that a phase may appear many times as a program
executes. In our paper, we evaluate fixed-length interval sizes
of {100k,200k,400k,800k,1M,10M} and the trade-offs between
simulation speed and trace accuracy.

Dynamic Phase Classification [15] partitions a set of inter-
vals into phases with similar behavior. This partitioning is
done by dynamically creating a code signature [3] to repre-
sent each interval of execution, and intervals that have sim-
ilar code signatures are dynamically grouped into the same
phase. The key observation is that for a given interval the
architectural metrics (CPI, number of branch mispredictions,
number of cache misses, power consumption) are a function
of the execution path (code signature). While demonstration
of the correlation between code signatures and architectural
metrics is beyond the scope of this paper, we refer the reader
to [14, 3] for more discussion.

To perform dynamic phase classification, we need to create
code signatures in the emulation environment as we execute
the program. For our approach, we create a code signature,
which is a vector with N entries (dimensions). This is the
approach used in [15]. At the start of an interval, the vector
is zeroed. For each branch PC executed in an interval, we
hash the branch PC to an entry in the vector, and we incre-
ment that entry by the number of instructions executed since
the last branch. Thus, at the end of each interval, the vector
contains a signature of the code executed in the interval. Fig-
ure 1 shows the structure of the dynamic phase classifier. The
vector on the left tracks the number of instructions executed
between the branches in the current interval of execution.

At the end of each interval of execution, we need to com-
pare the current code signature with signatures from ear-
lier intervals. If the current signature is very similar to ear-
lier signatures, we can re-use the power/performance statis-
tics from the earlier interval. Otherwise, we need to collect
power/performance statistics. We use the Manhattan distance
between code signature vectors to evaluate their similarity. If
the distance between two vectors is smaller than a phase clas-
sification threshold [15], the two intervals are determined to
be similar, and they are classified into the same phase.

To compare the current code signature vector with vectors
from previous intervals, we must store previous vectors in a
table called the phase signature table, as shown in Figure 1.
Each table entry stores the signature of the phase and its asso-
ciated architectural metrics. Each table also contains a unique

Phase ID, which is used during phase prediction, as described
in the next section. At the beginning of program execution,
the phase signature table is empty. At the end of each interval
of execution, the current branch vector is compared against all
branch vectors in the phase signature table by calculating the
Manhattan distances. A branch vector matches a phase table
entry if the Manhattan distance between the current branch
vector and the vector stored in the phase table entry is less
than the classification threshold. If the current branch vector
does not match any signature in the table, the current interval
is a new phase, so the current branch vector code signature
is added to the table, and is assigned a new phase ID (table
entry). If the current branch vector matches multiple phase
signature entries (i.e. the Manhattan distance is less than the
classification threshold for multiple entries), we choose the
phase signature table entry with the smallest distance.

3. PRODUCING CYCLE-CLOSE TRACES
In this section we explain how we use the dynamic phase

classifier to provide fast cycle-close tracing for emulation envi-
ronments. Note that we assume that these environments can
switch between fast emulation and processor cycle-accurate
simulation [18, 12].

The goal of our approach is to quickly provide detailed ar-
chitecture metrics (CPI, cache miss rates, energy, etc) for ev-
ery interval of the program/system execution. To efficiently
generate hardware metrics for all intervals of execution, we
need to sample (perform cycle level simulation for) one or
more intervals per phase using the dynamic phase classifier
described in the previous section. We perform cycle accurate
simulation on the samples, and then extrapolate the simula-
tion results to the remaining intervals of execution.

3.1 Phase Prediction
Whenever a new phase is detected, we need a cycle accurate

simulation sample for that phase. The problem which arises,
however, is that the dynamic phase classifier only classifies an
interval into a phase after executing the interval, because we
must wait until the end of the current interval for a complete
code signature. Therefore, when we detect a new phase, we
cannot perform cycle accurate simulation for the new phase,
because it is too late. Instead, we must wait until another
interval in that phase appears. To determine when to per-
form cycle accurate simulation for an interval, we use Phase
Prediction, as in [15].

At the end of each interval we predict the phase of the next
interval to determine if we should emulate or perform cycle
accurate simulation for that interval. Predicting which phase
is next is very important because it determines the number of
intervals which are sampled and therefore directly influences
the speed at which our tracing mechanism works. The predic-
tor accuracy also influences the number of intervals that are
left unsampled.

We experimented with two types of predictors. The first
is Last Value Prediction and it predicts that the next phase
will always be the same as the phase of the last interval ex-
ecuted. The second is a Run-Length Encoding Markov Pre-
dictor, which encodes the run length of the n recent phases
in the prediction (RLE-n). The RLE-n predictor encodes the
history of the previous n phase IDs executed along with the
run length l of each of the last n phases, which is the num-
ber of intervals each phase occurred in a row. Each phase ID
and length are hashed together to create an index into the
next phase prediction table. Each table entry in the RLE-n

predictor is tagged with this hash, so the RLE-n prediction
is only used if there is a tag hit. If there is a tag miss then
last value phase ID prediction is used. This approach is used
to predict the phase ID (phase signature table entry) for the
next interval of execution. We examined several values for n,
and from our experiments we concluded that RLE-2 provided
the best results. See [15, 5] for more details on the predictor.

3.2 Prediction Guided Sampling
We use phase prediction to determine when to collect a cycle

accurate simulation sample. Before each interval is executed,
we predict which phase the interval will belong to. To guide
sampling, we keep track of which phase IDs already have a
representative sample with a flag in the phase signature table.
When a new phase is inserted into the phase signature table,
it is marked as not having a sample. If we predict that a
phase ID without a sample is coming next, then we switch to
cycle accurate simulation for that interval. If we predict that
a phase ID with a sample is next, then no sample will be taken
for that interval and the interval is executed in fast emulation
mode. When an interval has finished execution it performs
a lookup of its branch vector in the phase signature table.
Based on this and the prediction’s correctness, we classify
each interval into one of the following three categories:
Unsampled - These are intervals, which were emulated based
on the next phase prediction, but after performing the phase
table lookup there is no sample to be found. When performing
the phase table match, the interval’s branch vector does not
match any phase signature table entry, or there is a match, but
that entry does not yet have a sample. To provide architecture
results for these intervals, we examine two approaches in the
results section. The first is to use the architecture metrics
given to the preceding interval. The second is to use the
architecture metrics from the interval in the phase ID table
that has the closest match to the current intervals branch
vector.
Sample from Simulation - The phase predictor predicted
that these intervals require a sample (the predicted phase ID
did not have a recorded sample); cycle accurate simulation is
performed for these intervals. Regardless of the correctness
of the prediction, the results of the simulation are used for
the interval. If the interval matches a current table entry
(within the classification threshold), the simulation sample is
used to update the table with the simulation results and the
signature for that phase ID is also updated. If it does not
match a phase table entry, then a new entry is created with
the phase signature and hardware metrics stored there. This
allows other intervals that are matched with this new phase
ID to use that sample for its architecture metrics.
Sample from Match - These are the intervals that were em-
ulated, based on the prediction, and in looking up the branch
vector in the phase signature table a saved sample of archi-
tecture metrics was found.

3.3 Creating Detailed Cycle-Close Traces
We now put the dynamic phase classifier, phase predic-

tor and sampling approach together to explain the cycle-close
trace generation process. The emulation system emulates the
state of the program’s execution, creating branch vectors for
each interval and performing next phase prediction. The next
phase prediction will predict a phase ID, and in looking up
the phase ID in the phase signature table we will decide if the
next interval should be sampled or not. Only if the predicted
phase ID has not yet been sampled do we decide to sample

......

IDbranch addr hash

=
Branch Vector

code signature

Figure 1: Dynamic phase classifier.

the next interval. When cycle accurate simulation is chosen, a
warmup trace is used to bring the architectural structures to
a warm state, and the interval is sampled with cycle accurate
simulation.

The interval is executed either with or without sampling
based on the prediction. At the end of the interval’s execu-
tion, we now have a valid code signature (branch vector) for
that interval. We then look in the phase signature table for
a match. If there is no match, we insert a new phase ID into
the table. If we sampled this interval, we use the sample to
represent this interval’s architecture metrics and we update
the phase signature table with the sampled architecture met-
rics and the interval’s code signature. If the interval was only
emulated and there is a match that contains a sample in the
phase table, then that phase table entry is used to provide
the architecture metrics for that interval. If the interval was
emulated, and if there is a match without a sample or there
was no match in the phase signature table, then we use one
of the above techniques listed for Unsampled to provide the
estimated architecture metrics for that interval.

Since we are using small samples (e.g 100K), before sam-
pling we need to first warmup the architectural structures
such as caches and the branch predictor to make sure the
performance metrics will be accurately gathered. To accom-
plish this, while executing the code in the emulation environ-
ment, we propose to maintain a circular queue of the last M
memory references and the last B branch outcomes. We use
these traces to warmup the caches and branch predictor before
starting cycle accurate simulation. This requires the profiling
of memory addresses and branch outcomes to maintain this
circular queue during both fast emulation and cycle accurate
simulation. Through experimental results we found that set-
ting both M and B to 50000 provides accurate warmup of the
structures for the programs we examined. This resulted in
marginal (less than 0.1%) error in the estimated performance
metrics as well as a little effect on emulation and simulation
time.

4. METHODOLOGY
To evaluate the performance of our approach, we examine

MiBench [6] and SPEC benchmarks. The selection criterion
was to choose programs which would be typically run on an
embedded system platform such as a cell-phone or a PDA
(although the technique can be applied to other types of pro-
grams as well). We selected 5 programs from MiBench bench-
marks: gs, mpeg decode, mpeg encode, cjpeg and djpeg (the
smallest instruction count with half a billion instructions),
and 2 programs from SPEC 2000 benchmarks: bzip and gzip.

Each program was compiled for the Alpha ISA with one
input each, for a total of 7 programs. For these benchmarks,
SimpleScalar sim-outorder was used for full cycle accurate
simulation of each program and collection of code signatures.
At every interval of execution, architecture statistics are printed
along with a code signature. For the cycle level simulation re-
sults in this paper, we simulate a configuration that is similar

I Cache 16k 32-associative, 32b blocks, 1 cycle latency
D Cache 16k 32-associative, 32b blocks, 1 cycle latency
Memory 64 cycle round trip access
In-order Issue in-order issue of up to 1 operation per cycle

Func Units
1 integer ALU, 1-FP adder, 1 integer and 1 FP
MULT/DIV

Table 1: Baseline Simulation Model.

1

10

100

1000

10000

100000

1000000

bz
ip

cjp
eg

djp
eg gs gz

ip

m
pe

ge
nc

m
pe

g

av
er

ag
eS

im
ul

at
io

n
tim

e
(s

ec
on

ds
) 100k 200k 400k 800k 1M 10M full

Figure 2: Time in seconds comparing our cycle-close
scheme with 25% phase classification threshold for dif-
ferent interval sizes.

to a StrongARM microprocessor with a first level cache using
SimpleScalar as shown in Table 1. For the phase classifica-
tion, we used branch vectors with N = 32 dimensions (as
in [15]) and a signature table with 1024 entries, which was
large enough to capture all of the phase signatures for the
programs we examined.

5. CYCLE-CLOSE TRACING RESULTS
Figure 2 shows the total time in minutes it took to perform

the combined emulation and sampling for the set of bench-
marks we experimented using a 25% classification threshold.
Results are shown for a range of interval sizes, from 100,000
instructions to 10 million instructions, with the last column
being full simulation. The Figure is log-scale and shows the
execution time in seconds. For these results we used warmup
traces of size 50,000 events based on experimentation. The
time for full cycle-accurate simulation is obtained by running
each benchmark to completion on sim-outorder. The cycle-
close time was obtained by executing a modified Simplescalar
to perform the cycle-close tracing described in the previous
section.

Figure 2 shows that the average execution time for full
cycle-accurate simulation is 72 hours, with bzip being the
maximum time taking 224 hours, and djpeg the minimum
time taking 32 minutes. Using our cycle-close tracing for
an interval size of 200k instructions with a 25% classification
threshold provides an average simulation time of 8 minutes,
with gzip taking 50 minutes in the worst case, and djpeg tak-
ing less than one minute in the best case. We achieve orders of
magnitude improvement (312 times faster on the average) in
comparison to full performance/power traces with 3.2% error
rates.

It is important to note that these results are taken when
running SimpleScalar, which is a simulator that is built to
model wrong path and out-of-order execution. This adds com-
plexity to the simulator, which is the reason it takes so long
to perform cycle accurate simulation of a StrongARM for the
complete execution of the program. If one was to build a
StrongARM simulator from scratch, it would only have to
model a simple in-order, small number of stages, pipeline,

0%

1%

2%

3%

4%

5%

10
0k

20
0k

40
0k

80
0k 1M 10
M

P
er

ce
nt

ag
e

of
 to

ta
l i

nt
er

va
ls 0.25 sampled 0.25 unsampled

0.125 sampled 0.125 unsampled

Figure 3: Percentage of intervals sampled and unsam-
pled using RLE-2 prediction with 25% and 12.5% clas-
sification thresholds and for different interval sizes.

which will be significantly faster. Even for a tailored in-order
simulation model, our cycle-close tracing approach should see
similar reductions in simulation time. In addition, our re-
sults are more indicative of the cycle accurate simulation time
that will be needed as the complexity of embedded processors
grows, especially for the cell phone market.

In Figure 2 we can see that there is a trend to increased
execution time as the size of the interval increases. This is
somewhat counter-intuitive because the number of intervals
increases by a lot from 10M to 100k, which should result in
more phases and more sampling. However, we found that
the number of phases does not increase proportionally to the
number of intervals in the program. It increases much slower
for most of the programs. Since the amount of sampling is
closely related with the number of phases, bigger intervals
end up sampling more instructions, which leads directly to
longer execution times. For some combinations of programs
and interval sizes though, it is the case where increasing the
interval size decreases the number phases more dramatically.
This has to do with how well the phase behavior of the pro-
gram aligns with the boundaries of the fixed intervals. Some
examples are mpeg/100k, gzip/400k and mpegenc/800k. In
general, however, the execution times decrease as interval size
decreases.

Figure 3 shows the average percentage of intervals classi-
fied as Sampled from Simulation and Unsampled. The bottom
of each stack bar shows the average percentage of intervals
in which cycle accurate simulation was performed. The top
of each stack bar the percentage of intervals that were emu-
lated and had no sample available from the phase signature
table. We can see for 12.5% and 25% classification thresh-
olds an increase in the number of intervals Sampled as the size
of the interval increases. The same thing happens with the
percentage of Unsampled intervals. For interval size of 1M
instructions the percentage of sampled/unsampled intervals
decreases slightly for 12.5% threshold because of a significant
decrease in number of phases, since the interval is aligned
better with the periodic behavior of the program. For this in-
terval size, an average of 0.8% intervals are sampled for 25%
threshold and 1.9% for 12.5% threshold.

The existing full software emulation tools already provide
the ability to show the user exactly where in the code the cur-
rent point of execution is, and provide the ability to pause,
debug and set breakpoints to analyze execution. Many of
these tools want to provide detailed architecture metrics such
as power/energy, but currently do not do so because of how
slow this would make the system. We propose that they add
our fast cycle-close tracing presented here to display to the
user accurate detailed architecture metrics during each inter-

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000N
or

m
al

iz
ed

 E
ne

rg
y

Interval number

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000N
or

m
al

iz
ed

 E
ne

rg
y

Interval number

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 200 400 600 800 1000 1200 1400N
or

m
al

iz
ed

 E
ne

rg
y

Interval number

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 200 400 600 800 1000 1200 1400N
or

m
al

iz
ed

 E
ne

rg
y

Interval number

0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

0 50 100 150 200 250 300 350 400 450N
or

m
al

iz
ed

 E
ne

rg
y

Interval number

0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

0 50 100 150 200 250 300 350 400 450N
or

m
al

iz
ed

 E
ne

rg
y

Interval number

Figure 4: Normalized energy for running bzip for in-
put graphic (top 2 graphs), cjpeg with input gorilla
(middle 2 graphs), and djpeg with input gorilla (bot-
tom 2 graphs).

val of execution. They can even display which intervals are
sampled from simulation, sampled from phase classification,
or were classified as unsampled.

Examples of cycle-close traces are shown in Figure 4 where
we use our approach to recreate a trace of normalized energy
for the execution of bzip (top 2 graphs), djpeg (middle 2
graphs) and cjpeg (bottom 2 graphs). The energy consumed
for each 1 million interval of execution is graphed from the
start of execution (0 on x-axis) to the end of execution (far
right on x-axis). For each program pair, the top graph shows
the actual energy from cycle-close simulation of the complete
execution of the program, and the bottom graph shows the
energy trace estimated using our approach for 25% phase clas-
sification threshold. For bzip, we only show a portion (5 bil-
lion instructions) of execution to improve readability. These
results show that using the phase classification to recreate the
detailed trace of the program’s execution can achieve a very
tight match with full detailed simulation for each interval. We
have found similar results for other metrics such as cache hit
rates.

To evaluate the accuracy of the traces generated, we com-
pute the average point-wise deviation (APD) for each interval

of the program as 1
N

�N
i=0

abs(actuali−estimatedi)
actuali

∗ 100, where

N is the number of intervals. To use this equation for a given
architecture metric, we first gather actuali for each interval
by collecting the actual value of the architecture metric from

0%

1%

2%

3%

4%

5%

6%

7%

A
ve

ra
ge

 p
oi

nt
-w

is
e

de
vi

at
io

n 0.25 sampled 0.25 none 0.25 last 0.25 closest match

0.125 sampled 0.125 none 0.125 last 0.125 closest match

100k 200k 400k 800k 1M 10M
Figure 5: CPI Average point-wise deviation in sam-
pled and unsampled phases.

0%

2%

4%

6%

8%

10%

12%

bz
ip

cjp
eg

djp
eg gs gz

ip

m
pe

ge
nc

m
pe

g

av
er

ag
e

A
ve

ra
ge

 p
oi

nt
-w

is
e

de
vi

at
io

n
(%

)

cpi dl1 hits energy

Figure 6: Average point-wise deviation of the cycle-
close traces for CPI, energy, and cache hit rates.

full detailed simulation of the program. Remember that each
interval also has associated with it a phase ID. Next we gather
estimatedi for each interval by using the value of the archi-
tecture metric estimated by our cycle-close approach. Finally,
we then perform an interval-wise comparison of actuali and
estimatedi.

Figure 5 shows the average point-wise deviation for all of
the intervals that had a sample (either through simulation or
from matching a phase), and the deviation from those that
were unsampled. The first three bars show results using a
25% classification threshold and the last three bars are for a
12.5% classification threshold. The three bars show the differ-
ent options for how to deal with the unsampled intervals. The
options are none, where no approximation is provided, last,
where the power/energy statistics from the preceding interval
are used, and closest match, where we use the power/energy
statistics for the previous interval with the closest matching
signature. It is clear that providing an approximation is im-
portant. The difference between last and closest match is min-
imal, implying that last should be used since it is a simple
technique.

Figure 6 shows the APD error on a per interval basis from
using the cycle-close traces for performance, energy, and cache
hit rates for a 200k interval size using 25% classification thresh-
old. The results shows that the error for any of these three
metrics is less than 10.3% in all cases (in fact less than 6%
when excluding cjpeg/dl1hits) and approximately 3.7% on
the average for all metrics.

6. RELATED WORK
In an effort similar to ours, Rapaka et al. [10] implements a

scheme to decide when to switch between functional and cycle-
accurate simulation. They use hotspots to identify frequently
executed regions of a program. A hotspot is a region of ex-
ecution that exhibits temporal locality in terms of the code

being executed. This focuses on reducing simulation time by
dynamically identifying these hotspot regions, sampling them,
and then reusing those samples to represent their future exe-
cution. They define a hotspot as a contiguous repetitive be-
havior, and they sample this behavior until it converges. Since
they can only represent a repetitive region of execution with
one converged sample, this means they must find the exact
period [13] of the repeating phase behavior (if one exists) and
the focus of their paper is how to do that dynamically [10].

In comparison, our approach does not have to align exactly
with the periodic behavior of the hotspots. This is because
we represent each interval by a unique code signature. This
allows us to automatically break what they would refer to as
a hotspot up into several unique re-occurring behaviors when
using fixed length intervals. Therefore, we do not have to
search for the exact periodic boundary as in [10], which can be
difficult to find for complex programs. The handful of unique
fixed length code signatures we find to represent a hotspot is
used to create an accurate cycle-close trace of execution.

Nagpurkar et al. [8] uses phase analysis to guide collection
of application profiles (basic block counts, hot path execution,
etc) from remote applications running on energy and perfor-
mance constrained devices. They also use dynamic phase clas-
sification to determine when to gather a profiling sample from
each phase. They then communicate these samples back to
a server where they can be aggregated together, even poten-
tially across multiple users. Our work extends their approach
by examining how to use phase prediction to decide if an inter-
val should be sampled or not before the interval is executed.
Their work [8] does not use phase prediction, instead they
profile the metrics of interest for every interval on the device.
Then after an interval is executed, they use dynamic phase
classification to examine the code signature to see whether
to communicate back (sample) the results for that interval to
the aggregation center. Another difference is that our work
focuses on dynamically creating a cycle-close trace of the com-
plete execution (every interval) of the program, whereas their
work focuses on creating an approximate summary of the over-
all program behavior at the trace aggregation center.

7. SUMMARY
For embedded system development, several companies are

providing cross-platform development tools to aid in debug-
ging, prototyping and optimization of embedded programs
and their designs. These are full system emulation systems
that can emulate the final binary to be run on the real board,
its operating system and the devices. In this paper we provide
the ability to produce cycle-close traces of architecture met-
rics (CPI, power, cache hit rates, etc) of a program’s dynamic
execution for such systems. Our approach uses dynamic phase
classification to generate targeted cycle-close simulation sam-
ples. For the programs we examined, cycle-close tracing is 312
times faster on average than a cycle accurate trace of the full
program’s execution, with only 3.2% error.

The ability to generate and display fast cycle-close traces
in tandem, as a program executes with full system emula-
tion, provides a whole new level of analysis for these types
of emulation systems. The user will be able to see how de-
tailed architecture characteristics change as the program exe-
cutes. For the future, we plan on applying similar techniques
to multi-processor environments such as CMP (Chip Multi-
processors) and SMT (Simultaneous Multithreading). In this
case, resource sharing makes the sampling decision more diffi-
cult because interactions between threads can result in many

more different behaviors throughout the execution of the sys-
tem.

Acknowledgments
We would like to thank the anonymous reviewers for providing
helpful comments on this paper. This work was funded in
part by NSF grant No. CCF-0311710, NSF grant No. CCF-
0342522, UC MICRO grant No. 03-010, and a grant from Intel
and Microsoft.

8. REFERENCES
[1] Accelerated technology. http://www.acceleratedtechnology.com/.

[2] Coware - http://www.coware.com/.

[3] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder.
The strong correlation between code signatures and performance.
In Proceedings of the 2005 IEEE International Symposium on
Performance Analysis of Systems and Software, March 2005.

[4] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase
classification. In Proceedings of the 2004 IEEE International
Symposium on Performance Analysis of Systems and Software,
March 2004.

[5] J. Lau, S. Schoenmackers, and Brad Calder. Transition phase
classification and prediction. In In the 11th International
Symposium on High Performance Computer Architecture,
February 2005.

[6] Mibench. http://www.eecs.umich.edu/mibench/.

[7] W. Mong and J. Zhu. Dynamosim: A trace-based dynamic
compiled instruction set simulator. In Proceedings of the
International Conference on Computer Aided Design, pages
131–136, November 2004.

[8] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware remote
profiling. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO’05), March 2005.

[9] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In Proceedings of the
41st Design Automation Conference, June 2002.

[10] V. Rapaka and D. Marculescu. Pre-characterization free, efficient
power/performance analysis of embedded and general purpose
software applications. In Proceedings of DATE Conference,
March 2003.

[11] M. Reshadi, P. Mishra, and N. Dutt. Instruction set compiled
simulation: A technique for fast and flexible instruction set
simulation. In Proceedings of the 40th Design Automation
Conference, June 2003.

[12] J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge. Intrinsic
checkpointing: A methodology for decreasing simulation time
through binary modification. In 2005 IEEE International
Symposium on Performance Analysis of Systems and Software,
March 2005.

[13] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simulation
points in applications. In International Conference on Parallel
Architectures and Compilation Techniques, September 2001.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
10th International Conference on Architectural Support for
Programming, October 2002.
http://www.cs.ucsd.edu/users/calder/simpoint/.

[15] T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. In 30th Annual International Symposium on
Computer Architecture, June 2003.

[16] T. Simunic, L. Benini, and G. De Micheli. Cycle-accurate
simulation of energy consumption in embedded systems. In
Proceedings of the 36th ACM/IEEE Design Automation
Conference, pages 867–872, June 1999.

[17] Symbian OS - http://www.symbian.com/.

[18] P.K. Szwed, D. Marques, R.M. Buels, S.A. McKee, and
M. Schulz. Simsnap: Fast-forwarding via native execution and
application-level checkpointing. In Interact-8: Workshop on the
Interaction between Compilers and Computer Architectures,
February 2004.

[19] Vast system technologies. http://www.vastsystems.com/.

[20] Virtio’s Virtual Platform. http://www.virtio.com/.

[21] Virtutech. http://www.virtutech.com/.

[22] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine
simulation. In SIGMETRICS’96, pages 68–79, May 1996.

