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Abstract

Most programs are repetitive, where similar behavior can
be seen at different execution times. Algorithms have been
proposed that automatically group similar portions of a pro-
gram’s execution into phases, where samples of execution in
the same phase have homogeneous behavior and similar re-
source requirements. In this paper, we present an automated
profiling approach to identify code locations whose execu-
tions correlate with phase changes. These “software phase
markers” can be used to easily detect phase changes across
different inputs to a program without hardware support.

Our approach builds a combined hierarchical procedure
call and loop graph to represent a program’s execution,
where each edge also tracks the max, average, and standard
deviation in hierarchical execution variability on paths from
that edge. We search this annotated call-loop graph for in-
structions in the binary that accurately identify the start of
unique stable behaviors across different inputs.

We show that our phase markers can be used to accu-
rately partition execution into units of repeating homoge-
neous behavior by counting execution cycles and data cache
hits. We also compare the use of our software markers to
prior work on guiding data cache reconfiguration using data-
reuse markers. Finally, we show that the phase markers can
be used to partition the program’s execution at code transi-
tions to pick accurately simulation points for SimPoint. When
simulation points are defined in terms of phase markers, they
can potentially be re-used across inputs, compiler optimiza-
tions, and different instruction set architectures for the same
source code.

1 Introduction

The behavior of a program is not random - as programs
execute, they exhibit cyclic behavior patterns. Recent re-
search [1, 6, 7, 24, 25, 26, 22, 8], shows that it is possible to
accurately identify and predict these phases in program exe-
cution. There are many applications of phase behavior - for
example phases can be exploited to accelerate architecture
simulations [24, 25], to save energy by dynamically recon-
figuring caches or processor issue width [1, 26, 7, 6], or to
guide compiler optimizations[19, 2].

In prior work [25, 26] we classified aprograminto phases
by first dividing a program’s execution into non-overlapping
fixed-length intervals of 1, 10, or 100 million instructions.
An interval is a contiguous portion of execution (a dlice in
time) of a program. A phase is a set of intervals within a
program’s execution with similar behavior (e.g., IPC, cache

miss rates, branch miss rates, etc), regardless of temporal ad-
jacency. Thismeansthat intervalsthat belong to a phase may
appear throughout the program’s execution. Our prior work
uses an off-line clustering algorithm to break a program’s
execution into phases to perform fast and accurate architec-
ture simulation by simulating a single representative portion
of each phase of execution [25, 16, 26, 22]. We also de-
veloped an on-line hardware algorithm to dynamically iden-
tify phase behavior to guide adaptive architecture reconfigu-
ration [26, 17]. This prior work aso relied on fixed length
intervals of execution.

The goal of this paper is to find phase transitions that
match the procedure call and loop structure of programs, in-
stead of using fixed length intervals. We select a subset of
each program’s procedures and loop boundaries to serve as
interval endpoints. Because each interval isaligned with code
boundaries, the program’s execution is divided into Variable
Length Intervals (VLIs) of execution. We use the code at
each sel ected procedureor loop boundary as asoftware phase
marker that, when executed, signals a phase change without
any hardware support. These software phase markers are se-
lected by analyzing each program'’s procedure call and loop
iteration patterns.

In this paper we present the formation of a Hierarchical
Call-Loop graph, which we use to find the software phase
markers. The graph containslocal and hierarchical execution
time for each procedure call and loop, as well as the variance
on al paths from each call or loop. We present a simple and
fast algorithm to select code structures that serve as software
phase markers from the Call-Loop graph. We show that the
software phase markers accurately identify phase changes at
the binary level, with no hardware support, across different
inputs to the program.

The remainder of the paper is laid out as follows. First,
prior work in phase analysis is examined in Section 2. The
simulation framework used in this work is described in Sec-
tion 3. Section 4 presents the method for generating the hier-
archical call-loop graph, and Section 5 presentsthe algorithm
for selecting phase markers. Section 6 exams applying the
code phase markers to data cache reconfiguration and Sim-
Point. Our findings are summarized in Section 7.

2 Phase Behavior and Related Work

Inthis section we give abrief overview of recent related work
on phase analysis, and provide more detailed descriptions of
the two areas of research closest related to ours — procedural
phase analysis, distance reuse software phase markers, and



using Sequitur to create variable length intervals.

2.1 Related Phase Analysis Work

Program phase behavior can be detected by examining a pro-
gram’sworking set [4], and several researchers have recently
examined phase behavior in programs.

Balasubramonian et. al. [1] proposed using hardware
counters to collect miss rates, CPl and branch frequency in-
formation for every hundred thousand instructions. They use
the miss rate and the total number of branches executed for
each interval to dynamically evaluate the program’s stability.
They used their approach to guide dynamic cache reconfigu-
ration to save energy without sacrificing performance.

Dhodapkar and Smith [6, 7, 5] found a relationship be-
tween phases and instruction working sets, and that phase
changes occur when the working set changes. They proposed
dynamic reconfiguration of multi-configuration units in re-
sponse to phase changes indicated by working set changes.
They use working set analysis for reconfiguration of in-
struction cache, data cache and branch predictor to save en-
ergy [6, 7].

Hind et. a. [11] provide a framework for defining and
reasoning about program phase classifications, focusing on
how to best define granularity and similarity to perform phase
analysis.

Sherwood et. a. [24, 25] proposed that periodic phase
behavior in programs can be automatically identified by pro-
filing the code executed. We used techniques from machine
learning to classify the execution of the program into phases
(clusters). We found that intervals of execution grouped into
the same phase had similar behavior across all architectural
metrics examined. From this analysis, we created a tool
called SimPoint [25], which automatically identifies a small
set of intervals of execution (simulation points) in a program
for detailed architectural simulation. These simulation points
provide an accurate and efficient representation of the com-
plete execution of the program. We then extended this ap-
proach to perform hardware phase classification and predic-
tion [26, 17]. In [17] we focus on hardware techniques for
accurately classifying and predicting phase changes (transi-
tions).

Isci and Martonosi [13, 14] have shown the ability to
dynamically identify the power phase behavior using power
vectors. Deusterwald et. a. [8] recently used hardware coun-
ters and other phase prediction architecturesto find phase be-
havior.

2.2 BasicBlock Vectors

Basic Block Vectors (BBVs) [24] capture information about
changes in a program’s behavior over time. A basic block
is asingle-entry, single-exit section of code with no internal
control flow. A Basic Block Vector (BBV) is a one dimen-
sional array where each element in the array corresponds to
one static basic block in the program. We use the BBV struc-
ture when using our variable length intervals with SimPaint.
We start with a BBV containing all zeroes at the beginning
of eachinterval of execution. During each interval, we count
the number of times each basic block in the program has been

executed, and we record the count in the BBV. For example,
if the 50th basic block is executed 15 times in the current
interval, then bbv[50] = 15. We multiply each count by the
number of instructions in the basic block, so basic blocks
containing more instructions will have more weight in the
BBV.

We used BBV's to compare the intervals of the applica-
tion’s execution [24, 25]. The intuition behind this is that
the behavior of the program at a given time is directly re-
lated to the code executed during that interval. Basic block
vectors are fingerprints for each interval of execution: each
vector indicates what portions of code are executed, and how
frequently those portions of code are executed. BBVs are
used to evaluate the similarity of their corresponding inter-
vals. If the distance between the BBV sis small, then the two
intervals spend about the same amount of timein roughly the
same code, and therefore the performance of those two in-
tervals should be similar. We compare our software phase
marker approach to basic block vectors, sinceit is one of the
more accurate techniques for phase classification [5].

2.3 Procedureand Loop Phase Analysis

Our approach is based on analyzing an application’s proce-
dure and loop structure and variance on execution paths to
partition a program’s execution into phases. This approach
is motivated by prior work that used fixed length vectors of
loop and procedure counts to identify phase behavior, and
prior work [12, 18, 9] into finding phase behavior at the pro-
cedure and loop level.

Huang et. a. [12] proposed a hardware algorithm for
tracking procedure callsviaacall stack, which they used with
aset of thresholdsto break a program’s execution into phases
at the procedurelevel. They focus on using a hardware archi-
tecture to dynamically find and track these phases. Georges
et. al. [9] implemented their approach to perform offline
phase analysis of Java programs. They implement Huang's
algorithm off-line to provide a workload case study on phase
behavior in Java programs. For both of these works, only
procedures are considered for splitting aprogram’s execution
into phases, and no software marking approach is examined.

In [16], we examined different structures for off-line
phase classification, including code signature vectors where
each dimension represents static procedure calls, returns and
loop branches in the binary. These code signatures were
used for phase analysis with fixed length intervals. From this
analysis, we found that tracking procedures alone resulted in
moreintra-phase performance variation compared to tracking
both loops and procedures.

In our work we found that it is important to use loopsin
addition to procedures, because loops give us more detailed
information about the program’s behavior patterns. Also, the
utility of procedures for phase classification depends on the
programmer’s ability to abstract their code into useful and
meaningful subroutines. As an extreme example, procedure-
based anaysis is very limited if the programmer writes all
their codein main.

Huang et. al. [18] recently considered procedures and
loopsto partition a program’s execution. The partitioning de-



termined where and when statistical samples should be taken
during architecture simulation. Their analysis broke up apro-
gram’s execution at static call sites, and if a procedure exe-
cuted for too long, they divided the procedure's execution
into its major loops. To determine the sample rate, they ex-
amine the variahility of several architecture metrics for each
program region. Both [16, 18] focused on dividing a pro-
gram’s execution trace into intervals of execution based on
procedure calls and loop branches to guide architecture sim-
ulation. In comparison, our current work focuses on build-
ing a procedure call-loop graph to divide a program’s execu-
tion into phases of repeating homogeneous behavior, and we
use this graph to select code constructs that serve as software
phase markers that indicate phase changes when executed.
In addition, we examine an architecture metric independent
method for modeling variance to determineif a call-loop site
has too much hierarchical variance when picking software
phase markers.

2.4 SoftwarePhase Marking

The closest prior work to oursisthework by Shenet. a. [23],
where they use Wavelets [3] and Sequitur [21] to build a hi-
erarchy of phase information to represent the program’s be-
havior patterns. Their approach is very different from ours,
since they perform their phase analysis using data reuse dis-
tance and identify phases with advanced analysis techniques
(wavelets and Sequitur), while our approach is based on
a program’s code structure, represented with our call-loop
graph, which can be analyzed very quickly with a ssmple
graph algorithm.

Shen et. al. [23] take the data reuse distance phases at the
finest granularity and use Sequitur to find patternsin the data
reuse trace, then express each pattern as aregular expression.
They then select software phase markersthat indicate the be-
ginning of each data reuse pattern by finding basic blocks
whose execution patterns are highly correlated with the data
reuse patterns. Because they select their phase markers with
reuse distance, they are able to find phase markers for pro-
grams with stable periodic behavior, but they found it diffi-
cult to find structurein more complex programslike gcc and
vortex. We show that our approach can find phase behav-
ior inall programswe examineincluding gcc and vortex,
and we compare our approach to the approach of Shen et.
al. [23] for guiding data cache reconfiguration. The goal of
our paper isto (a) run our analysisin amatter of minutes, (b)
create phase markersthat can be inserted into the binary, and
(c) apply our phase analysis to architecture reconfiguration
and SimPoint.

3 Methodology and Metrics

For al of theresults examined we perform our phase analysis
on asubset of the SPECINT 2000 benchmark suite. We chose
programs that were used in prior phase analysis papers, and
that were shown to be more challenging to perform accurate
phase analysis for [15]. In particular, we show results for
gce and vortex since the data phase marker approach of
Shen et. a. [23], could not be used to find phase behavior

dueto theirregular data behavior in these two programs.

The baseline architecture modeled is the same asin prior
work [25]. Each of the SPEC programs were simulated to
completion to collect the baseline results. We also provide
results for data cache reconfiguration, which were simulated
using a modified version of the ATOM [27] cache simula-
tor used in [23]. For the data cache reconfiguration results
we compare against the reuse distance-based software phase
marking approach of Shen et. a. in[23]. Shen was very gra-
ciousto provide us with the exact binaries he used, the reuse
distance phase markers he selected, and their ATOM-based
Cheetah simulator, which allowed usto do afair comparison
to their approach. For the comparison, we used the same bi-
naries they examined, which consists of tomcatv, swim,
compress95, mesh, applu.

3.1 Metricsfor Evaluating Phase Classification

Since phases are intervalswith similar program behavior, we
measure the effectiveness of our phase classifications by ex-
amining the similarity of program metrics within each phase.
After classifying a program’s intervals into phases, we ex-
amine each phase and calculate the average of some metric
(CPI, for example) over al intervals in the phase. We then
calculate the standard deviation of the metric for each phase,
and we divide the standard deviation by the average to get
the Coefficient of Variation (CoV). CoV measures standard
deviation as a fraction of the average. When we compute the
average and the standard deviation, we weight each interval
by the number of instructionsin theinterval, so intervalsthat
represent a larger percentage of the program’s execution re-
ceive more weight in the CoV calculations. By averaging the
per-phase CoV's across al phases, we have an overall CoV
that measures the homogeneity of a phase classification. Bet-
ter phase classifications will exhibit lower overall CoV. If al
of the intervalsin the same phase have exactly the same CPI,
then the overall CoV will be zero.

Unfortunately, CoV is not a perfect metric - if a program
with NV intervalsis classified into NV phases, the CoV will be
zero. For this reason, we also examine the number of inter-
vals and phases for each classification.

4 Representing Program Behavior with a Proce-
dureand Loop Graph

In this section we describe the hierarchical call-loop graph
which guides the placement of software phase markers. The
call-loop graph isacall graph extended with nodes for loops,
where each node and edge is annotated with hierarchical in-
struction counts and standard deviation in hierarchical in-
struction count.

4.1 Procedure, Loops, and Phase Behavior

Huang et a [12] found that program behavior tends to be
fairly homogeneous across different invocations of the same
procedure. We find that this result extends to loops as well:
program behavior across loop iterations and across different
executions of the same loop nest are fairly homogeneous.
We show this in the next section by showing that the Co-
efficient of Variation is not significantly affected by dividing



a program’s execution into procedures and loops, compared
to only procedures. Placing phase markers on loops allows
for smaller interval sizes compared to procedures alone.

While procedures are sufficient for detecting phase be-
havior in many programs, like Java applications with small
object oriented routines [9], we believe that it is also impor-
tant to examine a program’s loop structure because proce-
duresrely on the programmer to divide their code into mean-
ingful subroutines. In prior studies with SimPoint on the
SPEC 2000 benchmark suite, we found tracking loops and
procedures to be an effective way to detect phase behavior,
while tracking only procedureswas not as effective [16].

The call-loop graph has nodes for both procedures and
loops. Each node and edge in the call-loop graph carries the
call count, total local and hierarchical dynamic instruction
count, as well as the average and standard deviation of the
hierarchical dynamic instruction count.

4.2 Creating a Call-Loop Graph for Finding Phase Be-
havior

For our analysis we create a hierarchical call-loop graph
where edges are annotated with the hierarchical dynamicin-
struction counts. We build the call-loop graph by analyz-
ing binaries with ATOM [27]. Procedures are detected by
ATOM, and we identify loop back edges by looking for non-
interprocedural backwardsbranches. A loop isthe static code
region from the backwards branch to its target. There are
nodes for both procedures and loops in the call-loop graph.

The call-loop graph tracks the hierarchical instruction
counts for each edge. For a call, thisis the total humber of
instructions executed between call and return. For each edge
we keep track of (a) for procedures, the number of times the
procedure is called, and for loops, the number of times the
loop iterates, (b) the maximum number of instructions exe-
cuted on a single traversal of the edge, (c) the average num-
ber of instructions executed on each edge, and (d) the stan-
dard deviation in the number of instructions executed on each
edge.

In the call-loop graph, each procedure and loop is rep-
resented with two nodes to handle recursion and iteration.
Each procedure and loop is represented with a head node and
abody node. Every head node always has exactly one child,
which isits corresponding body node.

For loops, the loop head node keeps track of how much
time el apses between loop entry and exit, while theloop body
node keeps track of how much time elapsesin each loop iter-
ation. If aloop head is selected as a phase marker, then entry
to the loop are marked; if aloop body is selected as a phase
marker, then each loop iteration is marked.

For procedures, the head nodes keep track of elapsed time
for recursive procedures. Procedure body nodes keep track
of statistics for each recursive iteration, similar to the loop-
body nodes. For non-recursive procedures, the head and body
nodes carry identical information.

By representing each procedure and loop with head and
body nodes, we can identify more stable program behaviors.
For example, we can tell if aloop does similar amounts of

work on each iteration, and we can aso tell if aloop does
similar amounts of work between each entry and exit.

Figure 1 shows an example piece of code and Figure 2
shows a simplified call-loop graph corresponding to this
code. Because there is no recursion in this example, we only
show the procedure head nodes in the call-loop graph. To
save space in the example, the maximum count of instruc-
tions is not shown for the edges. Procedure foo contains a
loop and the edge between foo and the 1oop-head con-
tains the hierarchical instruction count from loop entry to
loop exit. In comparison, the 1oop-head to 1oop-body
edge containsthe hierarchical instruction count for each loop
iteration. Two nodes are used to represent the loop, and the
weight of the edge from foo to 1oop-head indicates the
number of times the loop is entered, and the weight of the
edge from 1oop-head to 1oop-body indicates the num-
ber of times the loop iterates.

As shown in Figure 2, each edge in the call-loop graph
tracks three values: the number of times the edge was tra-
versed (C), the average number of instructions executed each
time the edge is traversed (A), and the standard deviation of
the number of instructions acrossinvocations, which isrepre-
sented in Figure 2 asthe Coefficient of Variation (CoV). CoV
isjust the standard deviation divided by the average. We use
the CoV to find edges with low variance, which become can-
didates for phase marker selection, as described in the next
section.

5 Selecting Software Phase Markers

Software phase markers are points in the binary that can be
instrumented (branches, procedure calls, returns, loop en-
tries, the start of a procedure, etc) to reliably indicate the
beginning of a interval of repeating program behavior when
executed. These software phase markers can be used to eas-
ily and accurately predict program phase changes at run-time
with no hardware support. In addition, software phase mark-
ers can be used to predict phase changes across different in-
puts to a program, and across different compilations of the
same source code.

In this section, we discuss our software phase marker se-
lection algorithm. Given a call-loop graph as described in the
prior section, our algorithm sel ects phase markersthat can be
inserted into a program with a static or dynamic compiler or
binary instrumentation.

5.1 Selecting Markersfrom the Call-Loop Graph

Many programs exhibit repeating behavior at different time
scales. When selecting software phase markers, the selec-
tion algorithm needs to know whether the user is interested
in large or small scale behaviors. For example, optimiza-
tions with high overheads will be more interested in large-
scale phase behavior, since they require more time between
optimizations to recoup the cost of applying each optimiza-
tion. Our call-graph can be used to find both large and small
scale phase behaviors, and in this paper we focus on finding
phase behavior by starting the search at small granularities
and moving upward to larger granularitiesto identify marker



Proc foo()
loop
if (cond) call X;
else call Y;

end.iéop

call x;
end.ﬁéoc
Proc X ()

call z;
end.ﬁéoc

Figure 1: Code example

points with low variation in hierarchical instruction count at
the desired granularity.

The call-loop graph in Figure 2 shows why we use the
hierarchical instruction count CoV to guide the selection of
software phase markers. Each edge in the Figure shows C -
the number of times the edge was traversed, A - the average
hierarchical nhumber of instructions executed each time the
edge was traversed, and CoV - the hierarchical instruction
count coefficient of variation (standard deviation divided by
average). The example in Figure 2 shows that the edge from
X to ZhasaCoV of 200%. In the example, eachtime Z is
executed from the path coming from the 1oop-body edge
Z executes 50 instructions on average. In comparison, each
time z isexecuted coming fromthefoo to X to Z path,
Z executes 1000 instructions on average. Therefore, |ook-
ing at the edge from X to 2z we see a significant CoV in
hierarchical instruction count per edge traversal. But if we
look at the incoming edges to X the additional path differen-
tiation can separate the hierarchical instruction edge counts
per traversal into more homogeneous behavior. In this ex-
ample the edges from 1loop-body to Xand foo to X
both have alow CoV. This meansthat each time the edge was
traversed the number of instructions executed hierarchically
was about the same, so these two edges are good locations
for software phase markers.

We can aso use this example to demonstrate the over-
all agorithm we use to pick the software phase mark-
ers. Our algorithm takes as input a threshold for the min-

C=5
A=1100
CoV=10%

A=70
CoV=15%

C=305
A=65
CoV=200%

Figure 2: Call-Loop graph for code example: C is the num-
ber of times each edge is traversed, A is the average number
of hierarchical instructions executed each time the edge is tra-
versed, and CoV is the hierarchical instruction count coefficient
of variation. For procedures, only the procedure-head nodes are
shown, since the example does not have recursion. Maximum
instruction counts are also not shown to save space.

imum average interval size (hierarchical instruction count).
For this example, assume that this instruction count thresh-
old is set to 90, so we must have A >= 90. The edges
foo to loop-head, foo to X and loop-head to
loop-body would then be the only edges that would be
considered as potential software phase markers. In addition,
our algorithm aso uses a CoV threshold, which is set on a
per profile basis which we describe below. If, for the exam-
ple, we assumethisis set to 50%, then theedge 1oop-head
to loop-body would not be considered, since its CoV is
100%. This means that there is too much variation in hier-
archical instruction count for each iteration of the loop. In
comparison, each time the loop was entered and exited (foo
to loop-head edge) the CoV was low because the over-
all execution count for all of the iterations came out to be
similar. Therefore, a better place to put the software marker
isattheedge foo to loop-head. Theend result would
be the placement of the software markers at edges foo to
loop-headand foo to X.

As described in the example, our algorithm consists of
two phases. The first phase focuses on pruning the graph
based on average number of instructions per interval. When
amarker is placed on an edge in the call-loop graph, the av-
erage number of instructions per interval for that marker will
egual the average hierarchical instruction count on that edge
(shown as & in Figure 2). The second pass of the algorithm
searchesthe remaining nodesin the call-loop graphin reverse
depth order, looking for edges with a low average hierarchi-



cal instruction count CoV. This agorithm therefore takes two
inputs: a cal-loop graph and ilower. ilower specifies the
minimum allowed interval size, which is the minimum num-
ber of instructions allowed per interval. A CoV threshold is
used to limit the allowed variability in markers, but it is auto-
matically calculated in the first pass of the algorithm.

Pass 1 - Pruning based on the average hierarchical
number of instructions: We first estimate the maximum
depth of each node in the call-loop graph. Thisis done with
amodified depth-first search, where a node can be traversed
more than once if we later find a longer path to that node.
We never re-traverse a hode on the current path, to ensure
the algorithm terminates if the graph contains a cycle. We
place the nodes into a queue, sorted by decreasing estimated
maximum depth. This ensures that we will process children
before parents. We break ties by sorting by increasing out-
degree, so we process leaf nodes before non-leaf nodes. We
take each node off the queue and look at each of itsincoming
edges. We check if the average executed number of instruc-
tions for each edge satisfies the ilower requirement. If the
requirements are met, we mark the edge as a potential soft-
ware phase marker. Once all of the incoming edges on the
current node are processed, we continue to process the nodes
in the queue. After this passis done we have alist of poten-
tial software marker edges, where al of the edges are above
the average number of instructions allowed per interval. The
next phase will use these edgesto calculate a CoV threshold,
and select a subset of these edgesto use as phase markers.

Pass 2 - Setting and applying the hierarchical instruc-
tion count CoV threshold: The first pass of the algorithm
prunes away the lower parts of the call-loop graph that repre-
sent low-level behavior patternsthat aretoo small to mark ac-
cording to ilower, the minimum average number of instruc-
tions allowed per interval. We use the result of the first pass
to set a CoV threshold to select software phase markers from
the list of potential software phase markers.

We use the potentia software phase markersfound in the
first passto calculate aCoV threshold independently for each
benchmark, because programs inherently have different lev-
els of variability. In general, floating point programs have
more stable instruction counts within each loop and proce-
dure, while integer programs are more variable. By tuning
our CoV thresholdsto the variability found in each program,
we can still find stable behavior patterns in highly variable
programs.

The base CoV threshold is set to the average CoV
(avg(CoV)) across al of the edges in the list of potential
phase markers. We also calculate the standard deviation of
the CoVs in the list of potential phase markers, and the ac-
tual CoV threshold that gets applied to an edge is between
avg(CoV) and avg(CoV) + stddev(CoV'), scaled linearly
with the current edge’ saverage hierarchical instruction count.
This encourages the algorithm to pick edges with instruction
counts close to ilower, by alowing more variability as the
average instruction count grows away fromilower.

After acov_threshold isdetermined for an edge, we pro-
cess edges as in the first pass, except that an edge must now

satisfy both the ilower minimum instruction count threshold,
and the cov_threshold variability limit to qualify as a phase
marker. When the queue is empty we have a set of edges se-
lected as software phase markers that satisfy both the ilower
instruction count threshold and whose variation in hierarchi-
cal instruction count are below the cov threshold.

Complexity of the Algorithm: Our algorithm’s running
timeisO(E+Nxlog(N)), where N and E arethe number of
nodes and edgesin the graph. The N xlog(N) isdueto asort
of al of the nodesto create atotal call-loop depth ordering of
the nodes during thefirst part of the algorithm. The algorithm
runs in seconds on every call-loop graph we have collected.
The approach is faster and less complex than the approach
of Shen et. a. [23], where wavelet analysis [3] is applied
to reuse distance traces, and Sequitur [21] is applied to the
results of the wavelet analysis. It is aso significantly faster
than the VLI approach in [15] where Sequitur is run on a
branch trace to find hierarchical phase behavior.

We later show that the stability of the phases detected
by our approach are comparable to the results of Shen et.
al. [23], and that we can find predictable phase behavior inir-
regular programs, which the approach in [23] had some trou-
ble with.

5.2 Limiting Maximum Interval Size for SimPoint

The above algorithm is the default phase marker algorithm
we use for our analysis and for finding homogeneous behav-
ior to guide reconfiguration optimizations. This agorithm
does not have a limit on the size of the intervals chosen, so
in the results in this section we call the above algorithm no-
limit. Since thereis no limit on the phase interval sizes, this
algorithm can create phases with large intervals.

We also want to use our approach to pick simulation
points for SimPoint [25]. The goal of SimPoint is to pick
a set of simulation points, one from each phase of behavior,
to guide architectural simulation. These simulation points
together provide an accurate representation of the complete
execution of the program. To use our approach for SimPoint,
we break up the program’s execution into Variable Length
Intervals (VLIs), whenever a new phase marker is seen dur-
ing execution. When using phase markers with SimPoint, we
need to limit the maximum interval size to keep the simula
tion time reasonable.

We set alimit on maximum interval size with two addi-
tional steps in pass 2 of the base algorithm. Both of these
steps are used to enforce a maximum interval size, called
max-limit, when dividing execution into phases.

Maximum Interval Limit: During profiling, we record
the maximum hierarchical instruction count on each edge.
When looking for phase markers in the call-loop graph,
if the maximum hierarchical instruction count on a node’'s
incoming edge exceeds the max-limit, we stop searching
for a marker on this path (because everything else will be
even larger) and we mark the current node's outgoing edges
(which must be below the limit).

Merging Loop Iterations. In the second pass, we aso
try to group together consecutive iterations of a loop if each
iteration has a similar average hierarchical instruction count.



If the edge from the loop-head to the loop-body is below the
CoV threshold, we group together consecutiveloop iterations
until they are (a) greater than the minimum interval size, and
(b) lower than the max-limit threshold. Within these limits,
there are many potential groupingsof iterationsto potentially
choosefrom. For example, we could group two, three, or four
consecutive interval stogether. We know how many times the
loop is traversed on average from our call-loop graph, so we
group together N iterationsthat resultsin the average number
of iterations mod N closest to 0. In other words, we look for
avalueof N that evenly divides the number of loop iterations
per entry to the loop nest that satisfies the aboveinterval size
constraints.

Both of the above interval size heuristics are motivated
strictly for use with SimPoint to help reduce simulation time.
Markers found with these additional constraints can be fairly
input specific, so we only advocate this approach with Sim-
Point. It is not meant to capture behavior across inputs.

For the 1 imit phase marker resultsin this paper we use
a minimum interval size of 1 million instructions and max-
limit of 200 million instructions. Once phase markers have
been chosen with these additional heuristics, we run the pro-
gram gathering variable length interval basic block vectors,
which are then fed through SimPoint to select simulation
points.

5.3 Using the Software Phase Markers

We select software phase markers that, when executed, re-
liably predict the beginning of a repetitive interval of pro-
gram execution. The most obviousway to use software phase
markers is to use them as triggers for dynamic reconfigura-
tion or optimization. This can be done by inserting code into
the binary at phase markers to trigger reconfiguration or op-
timization. This can be done with a binary modification tool
such as OM [28] or ALTO [20].

Figure 3 shows the phase markers selected by our algo-
rithm for gzip-graphic. Timeison the X-axisin instructions,
and CPl and level 1 data cache miss rates are on the Y-axes.
Phase marker locations are indicated with symbols (circles,
squares, etc) plotted on top of the CPI or datamissrate. Each
phase marker is assigned a unique symbol. In Figure 3, the
2 large sized phases found are between the circles and trian-
gles. In Figure 3, the beginning of each long high miss rate
phase is marked with a circle, and the beginning each short
low miss rate phase is marked with atriangle.

There are many more phase markers than shown in Fig-
ures 3 and 4. To make these graphs readable, we only plot
the first occurrence of markers that repeat very frequently.
There are actually phase markers at each ridge shown during
along stable region of high missrate (circle) or low missrate
(triangle).

Figure 4 shows how the phase markers selected by our
algorithm for gzip-graphic from an OSF Alpha binary apply
to a Linux x86 binary. For this result, we take the mark-
ers selected on Alpha and map them back to source code
level, using debug line number information. We then use the
symbol information from the x86 binary to map the mark-
ersto the corresponding assembly instructionsin that binary.
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Figure 3: Time varying graphs with phase markers for gzip-
graphic for an OSF Alpha executable. Time is on the X-
axis, measured in instructions executed. Phase marker lo-
cations are indicated with symbols. Each marker is assigned
a unique symbol. If a marker occurs many times in a row, we
only plot the first instance from each repeating run to make
the graph more readable.
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Figure 4: Cross-ISA time varying graph with phase mark-
ers for gzip-graphic for Linux x86. The phase markers were
selected from the call-loop graph profile from the Alpha bi-
nary, were mapped back to source code level, and then used
to mark the x86 binary. No call-loop graph was created for
the x86 binary. The markers detect the same high-level pat-
terns in the x86 binary.

We applied this matching techniqueto other benchmarksand
found similar results. Thisresult shows the potential of using
the phase markers across different compilations of the same
source program.

Figures 5 and 6 are visua representation of the com-
plete execution of bzip2-graphic. These figures are a
3-dimensional projection of the basic block vectors collected
from each execution interval, where each interval is repre-
sented with asingle point in the figures. Each interval is pro-
jected down the 3 dimensions using random linear projection
and plotted as a point on the graph. Figure 5 shows fixed
length 100 million instruction intervals and Figure 6 shows
the software phase marker variable length intervals. In both
of these approaches a similar number of intervals were used
to represent the entire execution of the program. The same
projection matrix was used for Figures 5 and 6, but they are
shown at different angles. The angle was chosen for each
graphto best show how each set of interval s capturesthe pro-
gram’s use of its code space.

Bzip2 spendsthe majority of executionin several codere-
gions, and transitions between these regionsjust a few times.
The dominant code regions can be seen in both figures as
dense clouds of points. These code regions are substantially
more clearly defined in Figure 6 over Figure 5. The transi-
tions between these code regions can be seenin Figure5 asa
string of points connecting the denser regions. These transi-
tions are not visible in Figure 6 since the entire phase repre-



Figure 5: Bzip2 fixed length execution intervals rep-
resentation. The scattered representation with points
spread across the space is a direct consequence of us-
ing fixed length intervals across the execution.

sentation is synchronized with the program behavior where
transitions between dominant regions are encapsulated by
unique intervals.

Thesefigures providevisual evidencethat software phase
markers are partitioning the execution into naturally occur-
ring intervals that are in the code. This representationis cap-
turing alot of periodic behavior in the program. On the other
hand, the fixed length intervals are ignorant of the underly-
ing program behavior, and consequently are dissonant with
periodic behavior. That explains why visually the execution
appears more chaotic with fixed length intervals.

5.4 Behavior Characteristics of Software Phase Mark-
ers

In this subsection we present behavior results from using the
marker selection algorithm. For these results, we set ilower
to 1M instructions. We experiment with selecting phase
markers from the training input and applying the markers to
the ref input (cross-train), as well as selecting and applying
markers from the ref input (self-train). All numbers are re-
ported running the ref input.

We compare the results of our phase marking algorithm
to SimPoint 2.0 [25], an offline phase analysis tool based on
the k-means clustering al gorithm from machine learning. For
experiments with SimPoint, we collected basic block vec-
tors with ten million instructions per interval, and ran Sim-
Point on the vectors with a 15 dimension random projection
and k,,.. = 100. SimPoint classifies the intervals of ex-
ecution into phases. Note this is an idealized comparison,
since the SimPoint analysis cannot be used acrossinputs. We
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Figure 6: Bzip2 variable length execution intervals
representation using our phase markers. The tight
clustering of intervals is from marking regions of the
hierarchical call-loop graph that have fairly homoge-
neous behavior each time that edge is traversed during
execution.

also show experiments with allowing our phase marking al-
gorithm to only mark procedures. The result is similar to the
approach of Huang et. a. [12] and that used by Georges et.
a. [9], but we use our call-loop graph, instead of a dynamic
call stack approach used in their prior work. This alows us
to mark the procedure call edgesin the binary.

For our phase marker results, theno-1imit resultsrep-
resent creating phase markers using the algorithm as stated
in Section 5.1 where we do not put an upper bound on the
maximum interval length. In comparison, the result called
limit 1-200m represents using the additional heuristics
in Section 5.2 to choose phase markersthat constrain the size
of the variable length intervals produced to be used by Sim-
Point. For these results we used a minimum interval size of
1 million instructions and max-limit of 200 million instruc-
tions.

Figure 7 shows the average interval length selected by
each approach. BBV uses fixed-length 10M instruction in-
tervals. The next two bars show the results using our phase
marking approach, but only looking at edges coming into
procedure-headsand procedure-bodiesin the call-loop graph.
Thelast three bars show the results for choosing any edgein
the call-loop graph (marking both procedures and loops). All
except the last bar for the phase marker results choose phase
markers without specifying a limit on the maximum interval
size, whereas the last bar using a maximum limit of 200 mil-
lion instructions. Bars that might look like they are missing
have an average interval size of 1 million instructions. For
the self-train results, we examine a call-loop graph of the ref-
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Figure 9: Coefficient of variation of CPIl. Whole Program
shows each program’s variability assuming each interval is
classified into a single phase

erence input (self-train), and for (cross-train) we examine a
call-loop graph from the training input and apply the markers
to the ref input (cross-train). Using only procedures to mark
phasesresultsin averageinterval sizes of 1 billion (self-train)
to 10 billion (cross-train) on average. Loops bring the aver-
age interval size down to 10-100 million. The last bar shows
that putting alimit on the size of the intervals when perform-
ing the marking has an average interval size of 3 million in-
structions.

Figure 8 shows the number of phases detected by each
approach. The BBV approach detects the most phases, and
it also has the lowest variation in phases as we will see in
Figure 9. In most cases, our approach detects half as many

phases as the BBV approach. Findly, if we constrain the
search space of the call-loop graph by limiting the interval
sizes considered for SimPoint, we end up with more phase
markers.

Figure 9 shows the average coefficient of variation of CPl
per phase. The last two bars in these graphs show the over-
al program CoV using fixed length intervals of 100,000 in-
structions and 10 million instructions. These graphs show
that both the BBV and our software phase marker approach
successfully partition execution into phases of homogeneous
behavior. The procedures-only results have a lower CoV
CPI for some programs than when using loop and proce-
dures. Thisoccurs because marking procedures detects fewer
phases and produces significantly larger intervals compared
to procedures and loops. The general trend we have found is
that more behavior variability must be tolerated with smaller
interval sizes. For example, it iseasy to get aCoV of closeto
zero with a few number of phases. just treat the whole pro-
gram as one big interval. This is essentially what happens
for afew programs (like vpr) for the procedure only results.
In general, program behavior variability decreases as larger
intervals of execution are examined. In all cases, the average
behavior variation within each phase is much lower than the
program’soverall behavior variability.

6 Applications. Data Cache Reconfiguration and
SimPoint

In this section we examine applying our code phase markers
to data cache reconfiguration as in [23] and to SimPoint as
in[15].

6.1 Data Cache Reconfiguration and Comparison to
Data Reuse Markers

Adaptive data cache reconfiguration dynamically reducesthe
cache size to reduce energy consumption and access time,
without increasing the miss rate. In this section we perform
the exact same data cache reconfiguration experiment done
by Shen et. al. [23] to apply our software phase markers
to data cache reconfiguration. To ensure that our results are
comparableto prior work, we obtained from Shen the bench-
marks and simulation infrastructure used in [23] as discussed
in Section 3. We aso obtained from them their binaries and
their data phase markers, and we simulate the same adaptive
cache hardware: 64-byte blocks, 512 sets, 32KB to 256KB
cache size. The cache reconfigures by changing associativity
from 1 to 8 ways.

In using their approach (Shen et. al. [23]) for adaptive
cache analysis, during execution the first two intervals for
each phase marker are spent experimenting with the different
cache configurations. In thefirst two intervals, the best cache
configuration is determined for the phase. After thefirst two
intervals, when the phase marker is seen again, the best cache
configurationis automatically used for theinterval. We apply
the same a gorithm with our software phase markers.

We compare their markers against an ideal SimPoint [25]
approach. SimPoint is an offline phase analysis tool based
on the k-means clustering agorithm from machine learning.
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Figure 10: Average cache size with no allowed increase in
cache miss rate. BBV is the idealistic SimPoint-based ap-
proach, Reuse Distance is the approach of Shen et al (trained
with train input), and Software Phase Marker (SPM) is our
approach (trained with ref input (self) and train input(cross)).
Procs only uses procedures for picking the phase markers (no
loops). Best Fixed Size is the smallest fixed cache size with
the maximum hit rate out of the cache configurations we ex-

amine.

SimPoint classifies the intervals of execution into phases, as-
signing each 10M instructioninterval aphaseid. We take the
phaseids produced by SimPoint, and we use them to trigger
cache reconfiguration at each interval boundary. The ided
SimPoint-based cache reconfiguration has oracular knowl-
edge of the phaseid for each upcoming interval, as deter-
mined by the offline k-means algorithm. We find this ap-
proach to be a good approximation to the hardware BBV
phase classification approach in [26, 17] with perfect next-
phase prediction.

Figure 10 shows the average cache size used by each
cache reconfiguration approach on the benchmarks used by
Shen et. a. [23]. The figure shows the average cache size
used over the execution of the program. The Self results
show using the same input to both generate the phase mark-
ers as gathering the results, and the Cross results show using
the training input to generate the phase markers and the ref-
erence input for reporting the adaptive cache size results. For
these results, we found for our approach that the benchmarks
are very regular: the average coefficient of variation of hier-
archical instruction count in marked procedures and loopsis
less than 1% for these programs. This means that it is easy
to predict the number of instructions executed within the pro-
gram’s main procedures and loops with very high accuracy.
On these benchmarks, our phase marking approach outper-
form the idealistic BBV approach, indicating that the fixed-
length intervals are out of sync with the phase behavior ex-
hibited by these programs. For example, our phase marking
approach selects interval s with an average of 4M instructions
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for applu. Fixed length intervals of 10M instructions should
not work well in this case, and we see that with the BBV av-
erage cache size being close to the best fixed cache size for
applu.

The results aso show that our ssimple software phase
marking approach is as effective as the more complicated
reuse distance-based approach of Shen et. a. [23] for cache
reconfiguration on these regular programs. We also find that
selecting markersfrom thetrain input is as effective as sel ect-
ing markersfrom the ref input, as expected due to the regular
behavior patterns exhibited by these programs. Examining
only procedures does not work very well for some of these
programs because they spend most of their timein loops. We
end up marking only a few procedure call edges for some
of the programs as described in the prior section. Shen et.
a. [23] only provided us with their phase markers and bi-
naries for the programs we provide results for in Figure 10.
Therefore, we could not run their reuse-distance analysis to
generate results for gcc or vortex for their approach, which
iswhy gcc and vortex are not shown. For our own bina-
ries we ran this experiment for gcc and vortex. For gce,
we found the best fixed cache to be 256KB and 240KB us-
ing software phase markers. For vortex, we found the best
fixed cache to be 245KB and 200KB using software phase
markers.

6.2 Applying Phase Markersto SimPoint

The focus of our approach with SimPoint is not to improve
the accuracy or to reduce simulation time over the standard
SimPoint technique. Instead, thefocus of using phase-marker
based simulation pointsisto create simulation pointsthat can
be re-used across inputs, and potentially re-used if the pro-
gram is recompiled, even on another architecture.

We now examine using our phase marking algorithm to
partition a program’s execution at phase marker boundaries.
We use the additional heuristics described in Section 5.2 to
limit the maximum interval size. We set the maximum inter-
val size threshold to 200 million instructions. The average
interval length, number of phase IDs and CoV of CPI results
for these 1imit phase markers are shown in Figures 7, 8,
and 9.

To produce the variable length interval SimPoint results
we use the phase markers to partition each program’s execu-
tioninto variable length intervals. Whenever amarker occurs
during execution, that isa start of anew interval. Aswe break
the program’s execution into VLIs, we collect a basic block
vector for each variable-length interval. To pick the smula-
tion points, we pass these variable length basic block vectors
through the SimPoint 3.0 VLI [15, 10] algorithm. We had to
use this new version of SimPoint, since each VLI representsa
different percentage of execution. Standard SimPoint 2.0 as-
sumes each interval represents an equal fraction of program
execution.

Figure 11 shows the number of simulated instructions re-
quired, and Figure 12 show the CPI error rates for the various
flavors of SimPoint. In these graphs, the first three bars show
the number of simulated instructions required when using the
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Figure 11: The number of simulated instructions when using
fixed length intervals of size 1, 10 and 100 million instruc-
tions for SimPoint. This is compared to using phase markers
to break the program’s execution into VLIs.
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Figure 12: Estimated CPI SimPoint error when using fixed
length intervals compared to variable length intervals using
phase markers.

existing SimPoint [25] 2.0 approach with fixed length inter-
valsusing interval sizes of 1, 10 and 100 millioninstructions.
For the fixed length interval results, k.. was set to 300 for
the 1 million interval, 30 for 10 million interval, and 10 for
100 million interval asin [22]. In all these experiments, sim-
ulated CPI datawas used for the chosen interval swith perfect
warmup.

Thelast three bars in these graphs shows resultsfor VLIs
created with our phase markers. The last bar (VLI 100%)
shows the results when a simulation point is selected from
each cluster. We also consider a common optimization ap-
plied to SimPoint, where clusters are sorted by their weight,
then simulation points are selected from the top N clus-
ters which account for 95% or 99% of execution. This is
a common technique which trades simulation time for accu-
racy [10].

For the VLI results in Figures 11 and 12, the number
of clusters and simulation time are highly correlated to the
number of phase markers shown in Figure 8. This is be-
cause the phase markers delineate different code behaviors,
which means the BBV's created for different phase markers
should be reasonably different from each other. In Figure 8,
galgel and gcc have a large number of phase markers
for the 1imit approach, because we end up marking many
small child in the graph due to our restrictions on maximum
interval length, which results in more phase markers. The
call-loop graphsfor these programs have several pointswhere
we are forced to make a choice between marking avery large

11

interval, or marking a large number of small intervals. In
these cases, to enforce our upper limit on interval size (Sim-
ulation time) we end up marking a large number of small
intervals.

Overall, the results show that the variable length inter-
vals, when using the 99% filter, has about the same simula-
tion time as 10m fixed length SimPoint with a comparable
error rate. The results show that our VLI approach does not
really provide an improvement over 1m or 100m fixed length
SimPoint when just looking at the results, but the results are
comparable, which was our goal.

6.2.1 Source Code Simulation Points

The goal of using phase markers with SimPoint is to parti-
tion a program’s execution into variable length interval s that
match the natural phase-based code transitions during execu-
tion. Thisalowsusto mark phasetransitionsat the codelevel
and to potentially pick the same simulation points across dif-
ferent compilations of the same source code when running
the same input. This can be useful for using SimPoint to
guide architecture studies where there are | SA changes, or to
study compiler optimizations (picking phase markersthat are
not compiled away).

To examine the potentia effectiveness of our approach,
we examined selecting phase markers to be used across two
compilations of each program. We compiled each Alpha bi-
nary without optimization and with full pesk optimization.
We then used our phase marker sel ection algorithm to choose
asingle set of simulation points to be used across these two
binaries.

To verify that these markerswill result in the same phase
behavior across the two binaries, we took the selected phase
markers and produced a trace of executed phase markers for
each binary for a specific input, similar to the trace shown in
Figure 3. We then compared these two phase marker traces
between the two binary runs to make sure that we see the
exact same number of phase markers, and the exact same or-
der of phase markers between the two traces. For the pro-
grams we examined, these traces were an identical match.
This means that by using these phase markers to select sim-
ulation points, we can accurately map the simulation point
across the binaries based on these phase marker traces. This
will allow us to simulate the exact same part of execution
(even though the number of dynamic instructions can vary)
for a given simulation point across these different compila-
tions of the same source code. Presenting the details for this
approach and flushing out the algorithm is our current and
future research.

7 Summary

We presented an automated profiling approach to identify
code constructs (branches, procedure calls and returns) that
indicate phase changes when executed. We call these code
constructs “ software phase markers,” and they can be used to
easily detect phase changes across different inputs to a pro-
gram without hardware support.

Our approach builds a combined hierarchical procedure



call-loop graph to represent a program’s execution, where
each edge al so tracks the average hierarchical execution vari-
ability on paths from that edge. We run a simple graph a-
gorithm on the call-loop graph to identify marker points with
low variability that will result in a desired minimum interval
size.

We demonstrated that the phases detected by our ap-
proach have behavior homogeneity comparabl e to the phases
detected by the offline SimPoint [24, 25] clustering algo-
rithm. We demonstrated that our approach, which has signif-
icantly faster analysis time for selecting markers, is as effec-
tive as the approach of Shen et al [23] for dynamic datacache
reconfiguration, even though we choose our markers by ex-
amining only our call-loop graph, and they set their markers
by examining data reuse distance traces. In addition, we de-
tect phase behavior in irregular programs such as gcc and
vortex, which [23] says that they have trouble with.

Finally, we show that our phase markers can be used to
create variable length interval s to guide SimPoint. The bene-
fit hereis not animprovement in SimPoint accuracy or reduc-
tionin simulation time. Instead, our goal is to provide a new
feature, where simulation points can be mapped to source
code, so simulation points can be re-used if the program is
recompiled, even on adifferent instruction set. Thisisthefo-
cus of our current research, which we call cross-binary sim-
ulation points.
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