Relevance Heuristics for Program Analysis

K. L. McMillan

Cadence Research Labs

mcmillan@cadence.com

Abstract

Relevance heuristics allow us to tailor a program analysis to a par-
ticular property to be verified. This in turn makes it possible to
improve the precision of the analysis where needed, while main-
taining scalability. In this talk I will discuss the principles by which
SAT solvers and other decision procedures decide what informa-
tion is relevant to a given proof. Then we will see how these ideas
can be exploited in program verification using the method of Craig
interpolation. The result is an analysis that is finely tuned to prove
a given property of a program. At the end of the talk, I will cover
some recent research in this area, including the use of interpolants
for verifying heap-manipulating programs.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Languages, Theory, Verification

Keywords abstract interpretation, model checking, Craig interpo-
lation

Summary

Static analysis of programs using abstract interpretation methods
has proved an effective technique for establishing key properties of
programs for compiler optimization or verification purposes. There
is, however, an inherent tension in these methods between precision
and cost of the analysis. An abstract domain that maintains suffi-
cient information about the program state to verify a given property
may be too costly to allow scaling to programs of even moderate
size.

Automated abstraction refinement methods address this prob-
lem by tailoring the abstraction to the property. This is usually done
in an iterative manner, by analyzing abstract counterexamples, or
failures of the abstraction to prove the given property for a partic-
ular program execution trace. After each such failure, information
is added to the abstract domain that is sufficient to prevent the fail-
ure in subsequent analysis. This approach is known as CEGAR, or
counterexample-guided abstraction refinement.

Such methods have shown significant promise in analyzing low-
level software, such as operating system device drivers, and other
control-oriented codes. For example, the SLAM toolkit from Mi-
crosoft research has proved effective in finding control errors (such
as illegal use of kernel API functions) in real-world device driver

Copyright is held by the author/owner(s).
POPL’08, January 7-12, 2008, San Francisco, California, USA.
ACM 978-1-59593-689-9/08/0001.

codes. SLAM is based on predicate abstraction, a parameterized ab-
stract interpretation that effectively computes the strongest induc-
tive invariant of a program that can be expressed as a Boolean com-
bination of a given set of atomic predicates. Choosing the predi-
cates by counterexample-guided refinement gives SLAM the ability
to focus the abstraction on information that is relevant to the proof
(or falsification) of a given property. This ability allows SLAM and
similar tools to scale to real codes of moderate size, albeit only in
the case when the property is fairly shallow, in the sense that it
requires only a small amount of information about the program’s
state to prove it.

This talk will focus on the key question in all such methods:
how do we know what information about the program is relevant
to proving a given property? Though this might seem like an ill-
defined question, in fact there has been extensive research into this
question in the area of Boolean satisfiability (SAT) solvers. This has
resulted in algorithms for SAT that are quite effective in focusing
proofs on relevant facts and ignoring extraneous facts. This ability
has been exploited in other areas, such as finite-state verification
and ground decision procedures (using an approach known as SMT,
or SAT modulo theories).

The relevance heuristics in SAT solvers are based on a simple
idea: that facts useful in proving special cases are likely to be
useful in general, if we can figure out how to generalize them
appropriately. This same idea is implicit in CEGAR. That is, in
proving a property of a specific program execution, we hope to
discover predicates that are useful for proving the property for
all executions. For program analysis, a useful “special case” is
typically some restricted execution of the program, which might
be obtained, for example, by unwinding the program loops a finite
number of times.

The first part of the talk will cover relevance heuristics based on
the method of Craig interpolation. In effect, this method allows us
to construct a Floyd/Hoare proof for a loop-free program fragment
based on a proof generated by an off-the-shelf decision procedure
or theorem prover. This in turn allows us to exploit the prover’s
built-in relevance heuristics to refine our abstract domains. We
will also observe that relevance heuristics give us a way to prove
properties using abstract domains of infinite height, without the risk
of over-widening.

The second part of the talk will focus on recent developments in
relevance heuristics for heap-manipulating programs. We will see
how the Craig interpolation approach can be extended to handle the
richer logical framework needed to express properties of heaps. In
particular, we must be able to handle quantifiers (to reason about
heaps of unbounded size) and reachability of linked structures (to
express properties such as acyclicity). The talk will outline one po-
tential solution to these problems, and show how interpolation in
first-order logic with transitive closure might be used for abstrac-
tion refinement in verifying heap-manipulating programs. The abil-
ity to focus such abstraction on facts relevant to a given property

may in turn allow the methods to scale up to programs of practical
size.

About the speaker

Ken McMillan is currently a research scientist at Cadence Berke-
ley Labs in Berkeley, California. He works in formal verification,
primarily in model checking and compositional methods. He holds
a BS in electrical engineering from the University of Illinois at Ur-
bana (1984), an MS in electrical engineering from Stanford (1986)
and a Ph.D. in computer science from Carnegie Mellon (1992). He
is the author of the SMV symbolic model checker, and received
the 1992 ACM doctoral dissertation award for his thesis on sym-
bolic model checking. For his work in this area, he also received
an SRC technical excellence award (1995), the ACM Paris Kan-
nelakis award (1998), and the Alan Newell award from Carnegie
Mellon (1998). His current research is focused on using Craig in-
terpolation methods for software verification.

