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Why is it hard?

1. Each Scene is a dynamical system.

2. Objects interact with their environments.

3. The presence of a new object changes the energy
balance in the scene.

4. The problem is under constrained.
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Direct Illumination
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Global Illumination
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The Solution

The Distant Scene

The Local Scene

The Synthetic Objects
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Distant Scene

A Model of incoming light.

Contributes direct illumination only.

The reflections in the scene do not affect the distant
illumination.

Modelled using a envionment map.
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Local Scene

A model of the local geometry of the scene.

A model of the local reflectance in the scene
estimated from the scene or prior knowledge.

Contributes direct as well as indirect illumination to
the synthetic objects.
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Synthetic Objects

A model of the geometry of the objects

A model of the reflectance of the object
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The Method

Capture the distant illumination in the scene.

Measure the local BRDF.

Model the synthetic objects and the local geometry.

Render the objects and the local scene using full
global illuminations.

Composit into the original scene using differential
rendering.
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Anatomy of a light source

What is a light source?

What is the space of all light sources?

How can we move about in this space ?
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Definitions

Radiance
Radiance is the amount of energy per unit time per unit
solid angle per unit area in the direction of travel.

or

The number of photons striking a point from a particular
direction per second.

Radiance remains constant along a line in free space.
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Definitions

Free Space (F )
A bounded, open connected subset of 3d eucledian
space. ∂F is the boundary of F .

Set of rays (M(F))
The set of all closed directed lines [x1,x2] s.t.

1. x1 6= x2

2. x1,x2 ∈ ∂F

3. The line joining x1 and x2 is contained entirely in
F .
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Ray Manifold

Given a z0, let r be a ray which passes through
x0 = {x0, y0, z0}, in the direction (p0, q0, 1), then we
make the association

r→ (x0, y0, p0, q0)

Ray Manifold : Given a free space F , the set of rays

M(F) is a 4-D manifold
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Ray Manifold

R : M(F) → [0,∞)

R is the radiance along a ray r. Radiance remains
constant along in a line in free space.

Rz0
(x0, y0, p0, q0) = Rz1

(x+(z1−z0)p0, y0+(z1−z0)q0, p0, q0)
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The Lightsource Hypercube

Given a plane Pz0
, consider the set of rays

M = (x, y, p, q) : x ∈ [
hx

2
,
hx

2
],

y ∈ [−
hy

2
,
hy

2
]

p ∈ [−
hp

2
,
hp

2
],

q ∈ [−
hq

2
,
hq

2
]}

each having uniform radiance, R(hx, hy, hp, hq).
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Lightsource Hypercube

Some integration shows that the radiant flux from this set
of rays is

Φ = hxhyR(hx, hy, hp, hq)

∫ hp/2

−hp/2

∫ hq/2

−hq/2

dpdq

(1 + p2 + q2)2

set

R(hx, hy, hp, hq) =
1

hxhy

[

∫ hp/2

−hp/2

∫ hq/2

−hq/2

dpdq

(1 + p2 + q2)2

]−1

so that
Φ = 1
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Lightsource Hypercube

Let I(·) denote the indicator function on the interval
[−1/2, 1/2]. A uniform cubic source of unit flux
centered at position (0, 0, z0) is a source with the
radiance function

Rz0
(x, y, p, q) =

R(hx, hy, hp, hq)I

(

x

hx

)

I

(

y

hy

)

I

(

p

hp

)

I

(

q

hq

)

The set of all light sources can now be obtained by re-

stricting the coordinates in various manners.
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Light Sources

Real Source Ideal model hx hy hp hq

Overcast Sky Uniform Source ∞ ∞ ∞ ∞

Laser Single Ray 0 0 0 0
Flourescent Tube Linear Source ∞ 0 ∞ ∞

Sunlight Directed Point Source ∞ ∞ 0 0
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Light Sources

Real Source Ideal model hx hy hp hq

Louveres Fan of rays ∞ 0 0 ∞

Small Panel Light Point Source 0 0 ∞ ∞

Light through crack Parallel Rays ∞ 0 0 0

Rotating spotlight Fan of rays 0 0 ∞ 0
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Source Rays
That minimal subset Msrc ⊆M(F), s.t. if they are
removed, the radiance on the manifold M(F) would be
identically zero.
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Radiance Map

St. Peter’s Basilica
An omni-directional, high dynamic range image that
records the incident illumination conditions at a
particular point in space.
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Real Pixels are floats

I = L
π

4

(

d

h

)2

cos4 φt (1)

= LPe (2)

L : Scene Radiance
e = πd2

4 t : exposure.

There is no bound on the magnitude of I .
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The radiometric response function

I

M

M = f(I)

M is the observed image brightness.

M is bounded with finite dynamic range.

Estimating I requires estimating g = f−1.
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Estimating g

Use multiple exposures to estimate g.

Non-Parametric Regression - Debevec & Malik

Parametric Regression - Mitsunaga & Nayar
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Debevec & Malik

The range of f is discrete and finite.

f is monotonic and smooth.

Mi,j = f(Ii,j) (3)

g(Mi,j) = Ii,j (4)

g(Mi,j) = LiPiej (5)

log g(Mi,j) = log Li + log Pi + log ej (6)
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Non-Parametric Regression

O =
∑

i

∑

j

[g(Mi,j)− log LiPi − log ej]
2+λ

∑

z

g′′(z)2

g′′(z) = g(z − 1)− 2g(z) + g(z + 1)
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Mitsunaga & Nayar

Assume a flexible polynomial model.

Perform regression to estimate the parameters of the
mode.

Ii,j = g(Mi,j) =
N

∑

n=0

cnM
n
i,j
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Mitsunaga & Nayar

Ii,j

Ii,j+1
=

LiPiej

LiPiej+1
= Rq,q+1 =

g(Mi,j)

g(Mi,j+1)

O =
∑

i

∑

j

[

∑

n

cnM
n
i,j −Rj,j+1

∑

n

cnM
n
i,j+1

]2

and
∑

n

cn = Imax
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Re-estimating Exposure Ratios

R
(k)
j,j+1 =

1

N

N
∑

i=1

∑

n c
(k)
n Mn

i,j
∑

n c
(k)
n Mn

i,j+1
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Calculating the HDR Image

log Ii =

∑

j w(Mi,j)(g(Mi,j)− log ej)
∑

j w(Mi,j)

w(z) =

{

z − Zmin for z ≤ 1
2(Zmin + Zmax)

Zmax − z for z > 1
2(Zmin + Zmax)

w(z) =
g(z)

g′(z)
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Estimating g: a second look

MA = f(IA) = f(LPeA)

MB = f(IB) = f(LPeB)

IA

eA
=

IB

eB
= LP

or
g(MB) = kg(MA), k = eB/eA
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Brightness Transfer Function

MB = T (MA) = g−1(kg(MA))

The brightness transfer function relates the brightness

change from one image to the other as the exposure

changes.
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Properties of T

If g is smooth and monotonically increasing with a
smooth inverse. g(0) = 0, g(1) = 1 and k > 1, then

T is monotonically increasing.

T (0) = 0

T (M) ≥ M

limn→∞ T−n(M) = 0
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Fractal Ambiguity

g(T (M)) = kg(M)

if T (M) ∈ [a, b], then the above equation relates

g([a, b]) ↔ g([T−1(a), T−1(b)])

in the case of [a, b] = [T−(1(1), 1], it is

g([T−1(1), 1]) ↔ g([T−2(1), T−1(1)])

g([T−n(1), T−(n−1)(1)]) ↔ g([T−(n+1)(1), T−n(1)])
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Fractal Ambiguity

The above equations constrain the behaviour of g on
[0, T−1(1)).

The behaviour on [T−1(1), 1] is underconstrained.

We can choose an abitrary smooth monotonic
function s, s.t s(1) = 1, and s(T−1(1)) = 1/k and
extend it to a solution g.

Debevec & Mailk solved the ambiguity by imposing
a smoothness constraint.

Mitsunaga & Nayar constrained the solution to be a
polynomial.
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Exponential Ambiguity

What if, k as well as g are both unknown ?

g(T (M)) = kg(M)

[g(T (M))]γ = [kg(M)]γ

gγ(T (M)) = kγgγ(M)

Hence is (g, k) is a solution then (gγ, kγ), γ > 0 is also a
solution.

g and k cannot be jointly estimated.
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Recovering the Exposure Ratio

It is possible to recover the exposure ratio of two images
without knowing the response function g.

g(T (M)) = kg(M) (7)

g′(T (M))T ′(M) = kg′(M) (8)

If g’(0) ¿ 0 , then
k = T ′(0)

What happened to the exponential ambiguity?
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Estimation without registration

Previous approaches were based on exact pixel
correspondences.

Difficult getting data which is perfectly aligned.

Is it possible to recover the transfer function without
exact pixel correspondence?
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Estimation without registration

HA and HB are empirical distribution functions of image
brightness values.
HA(u) = # of points in A with brightness less than or
equal to u.
Hence,
HB(T (u)) = # of points in B with brightness less than or
equal to T (u)

= # of points in A with brightneess less than
or equal to u.

HB(T (u)) = HA(u)

T (u) = H−1
B (HA(u))
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Back to inserting objects
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Estimating local scene BRDF

1. Assume reflectance model.

2. Render the local scene.

3. Compare computed with actual.

4. Adjust paramerts of reflectance model.

5. Goto 2.
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Differential Rendering

1. Render the local scene Llocal

2. Calculate difference between the actual and the
computed.

Lerror = Lactual − Llocal

3. Render the local scene with the synthetic objects
Lobject

4. Composit using the error.

Lfinal = Lactual + (Lobject − Lerror)
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RNL
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Fiat Lux
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