3D Reconstruction for Rendering

Topic in Image-Based Modeling and Rendering
CSE291 J00
Lecture 6

This lecture

- [DTM96] Paul E. Debevec, Camillo J. Taylor, Jitendra Malik, "Modeling and Rendering Architecture from Photographs: A hybrid geometry and image-based approach". Technical report UCB/CSD-96-893, University of California at Berkeley, 1996.
- [TK94] Camillo J. Taylor and David J. Kriegman "Structure and Motion from Line Segments in Multiple Images". IEEE Trans. Pattern Anal. Machine Intell. 17(11) November 1995.

Introduction

- Presents an approach for modeling and rendering existing architectural scenes from sparse sets of still photographs.
- Geometry-based methods: modeling program is used to constructing model.
- Drawbacks: labor-intensive, difficult to verify and most of all: unrealistic.
- Image-based: creating model directly from photographs.
- Relies on stereo algorithms, has a lot constrains on the input.

Hybrid approach

- Combine the strengths of both geometrybased and image-based methods.
(a) Geometry-Based

(c) Image-Based

Hybrid approach

- Photogrammetric modeling: geometric model of the architecture is recovered interactively.
- View-dependent texture mapping: create novel view.
- Model-based stereo: additional geometric detail can be recovered.

Photogrammetric modeling

- Scene represented as a constrained hierarchical model of parametric primitives (block).
- Relationships between blocks are represented by a rotation matrix and a translation vector.

(a)

(b)

Figure 4: (a) A geometric model of a simple building. (b) The model's hierarchical representation. The nodes in the tree represent parametric primitives (called blocks) while the links contain the spatial relationships between the blocks.

Source [DTM96]
 references. A single variable can be referenced by the model in multiple places, allowing constraints of symmetry to be embedded in the model.

Advantages.

- Advantages of modeling the scene with blocks:
- Most architecture can be readily
 decomposed into a set of blocks.
- Blocks implicitly model common architectural constraints.
- Convenient to manipulate block primitives.
- Surface of the scene is readily obtained from the blocks.
- Reduce the number of parameters need to recover.

Reconstruction

- Based on the reconstruction of infinite straight lines. [TK94]
- Model parameters and camera positions are computed by minimizing objective function O.

Geometry of Straight Lines

- A straight line is represented by a tuple $<\mathbf{v}, \mathbf{d}>$.
- The line and the origin define a plane whose normal is vector \mathbf{m}
- The edge in the image will be:
$m_{x} x+m_{y} y+m_{z}=0$

Projection Function F

$$
\begin{aligned}
{ }^{c} \hat{\mathbf{v}} & ={ }^{c} \mathbf{R}{ }^{w} \hat{\mathbf{v}} \\
{ }^{c} \mathbf{d} & ={ }^{c} \mathbf{R}\left({ }^{w} \mathbf{d}-{ }^{w} \mathbf{t}_{c}+\left({ }^{w} \mathbf{t}_{c} \cdot{ }^{w} \hat{\mathbf{v}}\right)^{w} \hat{\mathbf{v}}\right) \\
{ }^{c} \mathbf{m} & ={ }^{c} \hat{\mathbf{v}} \times{ }^{c} \mathbf{d} \\
& ={ }^{c} \mathbf{R}\left\{{ }^{w} \mathbf{v} \times\left({ }^{w} \mathbf{d}-{ }^{w} \mathbf{t}_{c}\right)\right\} \\
{ }^{c} \mathbf{m} & ={ }^{c} \mathbf{m} /\left\|^{c} \mathbf{m}\right\|
\end{aligned}
$$

$$
F(R, t, v, d) \rightarrow m
$$

The Error Function

- Error function represents disparity between the actual and expected image measurements.

The Error Function <cont.>

- The total error between the observed edge segment and the predicted edge as:

Recovery Algorithm - Overview

- Minimizing object function O with respect to $\left\langle\mathbf{R}_{j}, \mathbf{t}_{\mathbf{j}}, \mathbf{v}_{\mathbf{i}}, \mathbf{d}_{\mathbf{i}}\right\rangle$
- Estimates for camera rotations R_{j}.
- Estimates for camera translations t_{j} and the parameters of the model $\left\langle\mathrm{v}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right\rangle$.
- Non-linear minimization over the entire parameter space.

Estimate R_{j}

- Initial estimates for R_{j} can be entered manually.
- Can be re-estimated after v_{i} are estimated.

Estimate \mathbf{v}_{i}

- Based on constraints

$$
{ }^{c} m^{T}\left({ }_{w}^{c} R^{w} v\right)=0
$$

- Use m' - measured normal to the plane passing through camera
 center and the observed edge

$$
{ }^{c} m^{\prime}=\left[\begin{array}{l}
x_{1} \\
y_{1} \\
-1
\end{array}\right] \times\left[\begin{array}{c}
x_{2} \\
y_{2} \\
-1
\end{array}\right]
$$

Estimate $\mathbf{v}_{\mathrm{i}}<$ cont.>

${ }^{c} m^{T}\left({ }_{w}^{c} R^{w} v\right)=0 \longrightarrow C_{1}=\sum_{i=1}^{n} \sum_{j=1}^{m}\left(m_{i j}^{\prime T} R_{j} v_{i}\right)^{2}=\sum_{i=1}^{n} C_{A_{i}}$

- \mathbf{v}_{i} is determined by minimizing each $C_{A_{i}}$ with respect to \mathbf{v}_{i}.
- $2 n$ degrees of freedom.
- Improve the estimates of $\mathbf{R}_{j}, \mathbf{v}_{i}$ by minimizing C_{1} with respect to $\left(\mathrm{R}_{\mathrm{j}}, \mathrm{v}_{\mathrm{i}}\right)$.
- $2 n+3(m-1)$ degrees of freedom.

Estimates $\mathbf{d}_{\mathbf{i}}$ and $\mathbf{t}_{\mathbf{j}}$

- Again, from constraint:

$$
{ }^{c} m^{T}\left({ }_{w}^{c} R^{w}\left({ }^{w} d-{ }^{w} t_{c}\right)\right)=0
$$

- \mathbf{d}_{i} and \mathbf{t}_{j} are estimated to minimize the objective function:

$$
C_{2}=\sum_{j=1}^{m} \sum_{i=1}^{n}\left(m_{i j}^{\prime T} R_{j}\left(d_{i}-t_{j}\right)\right)^{2}
$$

Estimates $\mathbf{d}_{\mathbf{i}}$ and $\mathbf{t}_{\mathbf{j}}$

- Note that \mathbf{v}_{i} is orthogonal to \mathbf{d}_{i}.

- Then, closed form linear least squares can be applied to obtain estimates for these parameters.

Minimizing the Objective

 Function.$$
O=\sum_{j=1}^{m} \sum_{i=1}^{n} \operatorname{Error}\left(F\left(p_{i}, q_{j}\right), u_{i j}\right)
$$

- Using variant of the Newton-Raphson method.
- Optimization requires fewer than ten iterations.
- Edge of the recovered models typically conform to the original photographs to within a pixel.

The edges of the reconstructed model, projected through the recovered camera positions and overlaid on the corresponding images. The recovered model conforms to the photographs to within a pixel in all twelve images, indicating that the building has been accurately reconstructed.

View-Dependent TextureMapping

- Projecting the original photographs onto the model based on viewing frustum.
- Single-image projection: image-space shadow map.

Composition of multiple images

- Need multiple images in order to render the entire model.

Compositing multiple images.

- Use the one with viewing angle closest to that of rendering view.
- Projected image weights are computed at every pixel of every projected rendering.
- In fact, a single weight is used across a flat surface.

- Blending images

- For pixel B, both views are equally good.
- One solution would be to use pixel values from view 1 to the left of B and pixel values from view 2 to the right of B.
- A better solution is to blend pixels from view 1 and view 2 in the area between A and C according to their relative fitness values.

Removal of obstructions.

- Unwanted objects in the original photograph may be projected onto the surface of the model.
- "Mask out" these objects with a reserved color.

Filling a holes.

- Unfilled pixels on the periphery of the hole are successively filled with the average values of the neighboring pixels.
- After each iteration, the region of unfilled pixels is eroded by a width of one pixel.

Model-Based Stereo

- Some geometric detail is not captured in the model.
- Measures how the actual scene deviates from the approximate model.
- The model serves to place the images into a common frame of reference.

Traditional stereo

- Given 2 images (key and offset) modelbased stereo computes the associated depth map for the key image by determining corresponding points in the key and offset images.
- When the key and offset images are taken from relatively far apart, corresponding pixel neighborhood can be foreshortened very differently.

Warp offset

- Project the offset image onto the model and view it from the position of the key image. (warped offset).
- Pixel neighborhoods are compared between the key and warp offset images.

Advantage of warp offset.

- Reduction of differences in foreshortening.
- Any point in the scene which lies on the approximate model will have zero disparity between the key image and the warped offset image.
- Easy to convert to a depth map for the key image.
- Less sensitive to noise in image measurements.

Result - The Campanile

- The Campanile, a short film shown at the SIGGRAPH'97 Electronic Theatre, used Façade to construct a photorealistic model of Berkeley's clock tower and the surrounding campus

Past, present and future ...

- Commercial products: Canoma, REALVIZ® ImageModeler, PhotoModeler Pro 4.5
- Manex entertainment: The Matrix.
- Using architectural conventions and practical considerations to enhance the reconstruction model.
- Reconstruct from single, uncalibrated image.
- And more...

