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Structure from Motion and MultiStructure from Motion and Multi--
view Geometryview Geometry

Topics in Image-Based Modeling and Rendering
CSE291 J00

Lecture 5
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Last lectureLast lecture
S. J. Gortler, R. Grzeszczuk, R. Szeliski ,M. F. Cohen   The 

Lumigraph,   SIGGRAPH, pp 43--54, 1996 

M. Levoy, P. Hanrahan,   Light Field Rendering ,   
SIGGRAPH, 1996

Aaron Isaksen, Leonard McMillan, Steven J. Gortler, 
Dynamically reparameterized light fields, SIGGRAPH 
2000, pp 297 - 306 

D. Wood, D. Azuma, W. Aldinger, B. Curless, T. Duchamp , D. Salesin, and W. 
Steutzle. Surface light fields for 3D photography, SIGGRAPH, 2000.  
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A cube of lightA cube of light

• All light from an object can 
be represented as if it were 
coming from a cube

• Each point on the cube has a 
a 2-D set of rays emanating 
from the cube.
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Modeling:
Move camera 
center over a 2-D 
surface.
2-D + 2-D -> 4-D
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Two plane parameterizationTwo plane parameterization
• Rays are parameterized by 

where they intersect these 
planes.

• Any point in the 4D Light 
field/Lumigraph is identified 
by its coordinates (s,t,u,v)

• Continuous light field
L(s,t,u,v)

• Cube around object – six 
slabs.

Note that the lumigraph and light field 
papers interchange roles of (s,t) and 
(u,v)
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RenderingRendering

• For each desired ray:
– Compute intersection with 

(u,v) and (s,t) planes
– Take radiance at closest ray

• Can be computed using texture 
mapping hardware

• Variants: interpolation

– Bilinear in (u,v) only
– Bilinear in (s,t) only
– Quadrilinear in (u,v,s,t)

• Apply band pass filter to remove 
HF noise that may cause aliasing
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LumigraphLumigraph RenderingRendering

• Use rough depth information to improve rendering quality
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Light Slabs (Again)Light Slabs (Again)

• Two-plane parameterization 
impacts reconstruction 
filters

• Aperture filtering removes 
high frequency data

• But if plane is wrong place, 
only stores blurred version 
of scene
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Variable ApertureVariable Aperture

• Real camera aperture produce 
depth-of- field effects

• Emulate depth-of- field effects 
by combining rays from 
several cameras

• Combine samples for each Ds,t
in the synthetic aperture to 
produce image

1. Render r’ with aperture A’: in focus
2. Render r’’ with aperature A’’: out of focus
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This lectureThis lecture
• Motion contains useful information
• Epipolar constraint
• The motion field for a moving camera
• Factorization for orthographic cameras
• Perspective – 8 point algorithm

1. Multiple View Geometry in Computer Vision, by Richard Hartley,Andrew
Zisserman, Cambridge University Press, 2000.

2. The Geometry of Multiple Images, by Olivier Faugeras, Quang-Tuan 
Luong, T. Papadopoulo, MIT Press, 2001.

3. C. Tomasi, T. Kanade, Shape and Motion from Image Streams: A 
Factorization Method,  IJCV, 9(2), 1992, 137-154.

4. Longuet-Higgins, Prazdny, The Interpretation of a Moving Retinal Image, 
Proc. R. Soc. Long. B, 1980, pp. 385-397.

5. Longuet-Higgins, A computer algorithm for reconstructing a scene from 
two projections, Nature, Vol. 293, 1981, pp. 133-135.
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Motion DemoMotion Demo
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Motion ResearchMotion Research

Motion Research

Motion
Segmentation

Tracking
Structure 

From Motion

Infinitesimal
SFM

Multiview
Methods

Orthographic/Affine Perspective Uncalibrated Stereo
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The Motion FieldThe Motion Field
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MotionMotion

“When objects move at equal speed,
those more remote seem to move
more slowly.”

- Euclid, 300 BC
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The Motion Field
Where in the image did a point move?

Down and left
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The Motion FieldThe Motion Field
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Motion Field EquationMotion Field Equation

• vx, vy : Components of image motion
•T: Components of 3-D linear motion
• ω : Angular velocity vector
• (x,y): Image point coordinates
• Z: depth
• f: focal length
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Pure TranslationPure Translation

ω = 0 
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Forward Translation & Focus of ExpansionForward Translation & Focus of Expansion
[Gibson, 1950][Gibson, 1950]
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Pure Rotation: Pure Rotation: TT=0=0

• Independent of  Tx Ty Tz
• Independent of Z
• Only function of (x,y), f  and ω
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Pure Rotation: Motion Field on SpherePure Rotation: Motion Field on Sphere
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EpipolarEpipolar GeometryGeometry
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TriangulationTriangulation

Nalwa Fig. 7.2
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Epipolar Constraint

• Potential matches for p have to lie on the corresponding 
epipolar line l’.

• Potential matches for p’ have to lie on the corresponding 
epipolar line l.



13

CS348, Fall 2001  David Kriegman, 2001

Epipolar Geometry

• Epipolar Plane

• Epipoles

• Epipolar Lines

• Baseline
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Epipolar Constraint: Calibrated Case

Essential Matrix
(Longuet-Higgins, 1981)
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Properties of the Essential MatrixProperties of the Essential Matrix

• E p’  is the epipolar line associated with p’.

• E p  is the epipolar line associated with p.

• E e’=0   and   E e=0.

• E is singular.

• E has two equal non-zero singular values
(Huang and Faugeras, 1989).

T

T

CS348, Fall 2001  David Kriegman, 2001

RectificationRectification
Given a pair of images, transform both images so 
that epipolar lines are scan lines.

Estimate a Homography to 
apply to each image, given at 
least four corresponding points
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Rectification

All epipolar lines are parallel in the rectified image plane.
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RectificationRectification
Given a pair of images, transform both images so that epipolar lines are scan 
lines.

Input Images
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RectificationRectification
Given a pair of images, transform both images so that 
epipolar lines are scan lines.

Rectified Images
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Features on same Features on same epipolarepipolar lineline

Truco Fig. 7.5
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E vs. F revisitedE vs. F revisited

The Essential Matrix E:
• Encodes information on the 

extrinsic parameters only
• Has rank 2 since R is full rank 

and [Tx] is skew & rank 2
• Its two non-zero singular 

values are equal
• 5 degrees of freedom

The Fundamental Matrix F:
• Encodes information on both 

the intrinsic and extrinsic 
parameters

• Also has rank 2 since E is 
rank 2

• 7 degrees of freedom

Thanks Josh

CS348, Fall 2001  David Kriegman, 2001

Epipolar Constraint: Uncalibrated Case

Fundamental Matrix
(Faugeras and Luong, 1992)
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Properties of the Fundamental Matrix
• F p’  is the epipolar line associated with p’.

• F p  is the epipolar line associated with p.

• F e’=0   and   F e=0.

• F is singular.

T

T
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E vs. F revisitedE vs. F revisited

The Essential Matrix E:
• Encodes information on the 

extrinsic parameters only
• Has rank 2 since R is full rank 

and [Tx] is skew & rank 2
• Its two non-zero singular 

values are equal
• 5 degrees of freedom

The Fundamental Matrix F:
• Encodes information on both 

the intrinsic and extrinsic 
parameters

• Also has rank 2 since E is 
rank 2

• 7 degrees of freedom

Thanks Josh
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The Eight-Point Algorithm (Longuet-Higgins, 1981)

|F | =1.

Minimize:

under the constraint
2
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Non-Linear Least-Squares Approach 
(Luong et al., 1993)

Minimize

with respect to the coefficients of  F , using an 
appropriate rank-2 parameterization.
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Recovering MotionRecovering Motion

Recall epipolar constraint

Where

Solve for R & t
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Structure from Motion:Structure from Motion:
UncalibratedUncalibrated cameras and projective cameras and projective amibguityamibguity

Thanks Josh
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The Eight-Point Algorithm (Longuet-Higgins, 1981)

|F | =1.

Minimize:

under the constraint
2
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Non-Linear Least-Squares Approach 
(Luong et al., 1993)

Minimize

with respect to the coefficients of  F , using an 
appropriate rank-2 parameterization.
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Recovering MotionRecovering Motion

Recall epipolar constraint

Where

Solve for R & t
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Structure from Motion:Structure from Motion:
UncalibratedUncalibrated cameras and projective cameras and projective amibguityamibguity

Thanks Josh
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Projective AmbiguityProjective Ambiguity

• We see that the same set of corresponding image points could come 
from two different sets of real world points and therefore both sets 
satisfy:

Thanks Josh
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The “only if” partThe “only if” part

• We would also like to show that if the cameras have the same fundamental matrix then 
there is a 4 by 4 matrix that relates them.

• If we take the camera matrices
and multiply them by:

we get
• The same is true for                                            and 

Thanks Josh
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Factorization method/Factorization method/affineaffine camerascameras

C. Tomasi, T. Kanade, Shape and Motion from 
Image Streams: A Factorization Method,  IJCV, 
9(2), 1992, 137-154.
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Factorization NotationFactorization Notation

N: Number of images
n: Number of points
Pi: ith point in 3-D

Rj, Tj: Rotation & Translation of
Camera j

(xi,j, yi,j): image of jth point  measured
in the ith frame.
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Origin of 3D Points at 3Origin of 3D Points at 3--D D CentroidCentroid
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Origin of image at image Origin of image at image CentroidCentroid

Centered Image Points
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Data MatrixData Matrix

are the i,j-th element of the N by n data matrices X, Yjiji yx ,,
~,~
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~ 2N by n registered data matrix

Rank Theorem: Without noise, the rank 
of W is less than or equal to 3.
Rank Theorem: Without noise, the rank 
of WW is less than or equal to 33.
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The Rank Theorem: FactorizedThe Rank Theorem: Factorized

The registered measurement matrix can be expressed in a 
matrix form:

represents the camera rotation

is the shape matrix
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FactoringFactoring
Given a data matrix containing measured feature points, it can be factored 

using singular value decomposition as:

Where
D: n by n diagonal matrix, non-negative entries, called singular values
U: 2N by n with orthogonal columns

VT: n by n with orthogonal columns

TUDVW =~

n

n

D σσσσ

σ

σ
σ

≥≥≥



















= 321
2

1

,

00

00
00

L

MOMM
L
L

• Without noise, σi =0, i>3
• With noise, set σ i =0, i>3
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Factoring: After setting Factoring: After setting σσii=0, i>3=0, i>3

Where
D’: 3 by 3 diagonal matrix, non-negative entries
U: 2N by 3 with orthogonal columns
VT: 3 by n with orthogonal columns
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AmbiguityAmbiguity

• True for any A.
• So, find an A such that rows of RA are unit 

length and pairs corresponding to same image are 
orthogonal.

)ˆ)(ˆ(ˆˆˆˆ~ 11 SAARSAARSRW −− ===

SA ˆ1−

AR̂ Estimated camera orientation

Estimated 3-D structure
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Four of 150 input imagesFour of 150 input images
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Tracked Corner FeaturesTracked Corner Features
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33--D ReconstructionD Reconstruction
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BuildingBuilding
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ReconstructionReconstruction

• Triangulate
• Texture Map


