Structure from Motion and Multiview Geometry

Topics in Image-Based Modeling and Rendering CSE291 J00

Lecture 5

CS348, Fall 2001

© David Kriegman, 2001

Last lecture

S. J. Gortler, R. Grzeszczuk, R. Szeliski , M. F. Cohen The Lumigraph, SIGGRAPH, pp 43--54, 1996

M. Levoy, P. Hanrahan, Light Field Rendering, SIGGRAPH, 1996

Aaron Isaksen, Leonard McMillan, Steven J. Gortler, Dynamically reparameterized light fields, SIGGRAPH 2000, pp 297 - 306

D. Wood, D. Azuma, W. Aldinger, B. Curless, T. Duchamp, D. Salesin, and W. Steutzle. Surface light fields for 3D photography, SIGGRAPH, 2000.

CS348, Fall 2001

Properties of the Fundamental Matrix

- F p' is the epipolar line associated with p'.
- **F**^T**p** is the epipolar line associated with **p**.
- F e'=0 and $F \stackrel{T}{e}=0$.
- F is singular.

CS348, Fall 2001

© David Kriegman, 2001

CS348, Fall 2001

CS348, Fall 2001

<text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Factoring: After setting $\sigma_i = 0$, i>3 $\widetilde{W}' = U'D'V'^T$ Where D': 3 by 3 diagonal matrix, non-negative entries U: 2N by 3 with orthogonal columns VT: 3 by n with orthogonal columns $\widetilde{W}' = U'D'V'^T = \hat{R}\hat{S}$ where $\hat{R} = U'D'^{1/2}$ $\hat{S} = D'^{1/2}V'^T$

CS348, Fall 2001

