Background: Camera models, Transforms, Radiometry

Topics in Image-Based Modeling and Rendering CSE291 J00
Lecture 2

Outline

- Camera Models
- Pinhole perspective
- Affine/Orthographic models
- Homogeneous coordinates
- Coordinate transforms
- Lenses
- Radiometry
- Irradiance
- Radiance
- BRDF

Effect of Lighting: Monet

Change of Viewpoint: Monet

Haystack at Chailly at sunrise(1865)

Pinhole cameras

- Abstract camera model box with a small hole in it
- Pinhole cameras work in practice

The equation of projection

Cartesian coordinates:

- We have, by similar triangles, that ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) -> (f x/z, fy/z,-f)
- Ignore the third coordinate, and get

Homogenous coordinates

- Add an extra coordinate and use an equivalence relation
- for 2D
- equivalence relation $\mathrm{k} *(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ is the same as (X,Y,Z)
- for 3D
- equivalence relation $\mathrm{k}^{*}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})$ is the same as ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T}$)
- Basic notion
- Possible to represent points "at infinity"
- Where parallel lines intersect
- Where parallel planes intersect
- Possible to write the action of a perspective camera as a matrix

Euclidean -> Homogenous-> Euclidean

In 2-D

- Euclidean -> Homogenous: (x, y) -> k (x,y,1)
- Homogenous -> Euclidean: $(\mathrm{x}, \mathrm{y}, \mathrm{z})$-> ($\mathrm{x} / \mathrm{z}, \mathrm{y} / \mathrm{z}$)

In 3-D

- Euclidean -> Homogenous: (x, y, z) -> k (x,y,z,1)
- Homogenous -> Euclidean: (x, y, z, w) -> (x/w, y/w, z/w)

The camera matrix

Turn previous expression into Homogenous Coordinates

- HC's for 3D point are (X,Y,Z,T)
- HC's for point in image
 are (U,V,W)

Affine Camera Model

- Take Perspective projection equation, and perform Taylor Series Expansion about (some point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$.
- Drop terms of higher order than linear.
- Resulting expression is affine camera model

Orthographic projection

Take Taylor series about $\left(0,0, z_{0}\right)$ - a point on optical axis

The projection matrix for orthographic projection

$\left(\begin{array}{c}U \\ V \\ W\end{array}\right)=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}X \\ Y \\ Z \\ T\end{array}\right)$

Euclidean Coordinate Systems

Coordinate Changes: Pure Translations

A rotation matrix is characterized by the following properties:

- Its inverse is equal to its transpose, and
- its determinant is equal to 1 .

Or equivalently:

- Its rows (or columns) form a right-handed orthonormal coordinate system.

Coordinate Changes: Pure Rotations

Coordinate Changes: Rigid Transformations

$$
{ }^{B} P={ }_{A}^{B} R{ }^{A} P+{ }^{B} O_{A}
$$

Block Matrix Multiplication

What is $A B$?
$A B=\left[\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right]$

Homogeneous Representation of Rigid Transformations

Camera parameters

- Issue
- camera may not be at the origin, looking down the z -axis
- extrinsic parameters
- one unit in camera coordinates may not be the same as one unit in world coordinates
- intrinsic parameters - focal length, principal point, aspect ratio, angle between axes, etc.

CSE 291 Joo, Winter 03	3×3	4×4	© Kriegman 2003

The reason for lenses

Thin Lens

- Rotationally symmetric about optical axis.
- Spherical interfaces.

Thin Lens: Image of Point

All rays passing through lens and starting at \mathbf{P} converge upon \mathbf{P} '

Earliest Surviving Photograph

- First photograph on record, "la table service" by Nicephore Niepce in 1822.

Radiometry

- Solid Angle
- Irradiance
- Radiance
- BRDF
- Lambertian/Phong BRDF

Solid Angle

- By analogy with angle (in radians), the solid angle subtended by a region at a point is the area projected on a unit sphere centered at that point
- The solid angle subtended by a patch area dA is given by

Radiance

- Power is energy per unit time
- Radiance: Power traveling at some point in a specified direction, per unit area perpendicular to the direction of travel, per unit solid angle
- Symbol: L(x,?)
- Units: watts per square meter
 per steradian $\left(\mathrm{wm}^{-2} \mathrm{sr}^{-1}\right)$

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance
- Incident power per unit area not foreshortened
- This is a function of incoming angle.
- A surface experiencing radiance $\mathrm{L}(\mathrm{x}, \theta, \phi)$ coming in from solid angle $\mathrm{d} \omega$ experiences irradiance:
$L(\underline{x}, \theta, \phi) \cos \phi d \omega$

CSE 291 J00, Winter 03

- Crucial property:

Total power arriving at the surface is given by adding irradiance over all incoming angles Total power is

Camera's sensor

- Measured pixel intensity is a function of irradiance integrated over
- pixel's area
- over a range of wavelengths
- For some time
- Ideally, it's proportional to the radiance.

$$
I=\iint_{i} \int_{x} \int_{y} E(x, y, \lambda, t) s(x, y) q(\lambda) d y d x d \lambda d t
$$

Light at surfaces

Many effects when light strikes a surface -- could be:

- transmitted
- Skin, glass
- reflected
- mirror
- scattered
- milk

Assume that

- surfaces don't fluoresce
- e.g. scorpions, detergents
- surfaces don't emit light (i.e. are cool)
- all the light leaving a point is due to that arriving at that point
- travel along the surface and leave at some other point
- absorbed
- sweaty skin

BRDF

With assumptions in previous slide

- Bi-directional Reflectance Distribution Function

$$
\rho\left(\theta_{\text {in }}, \phi_{\text {in }} ; \theta_{\text {out }}, \phi_{\text {out }}\right)
$$

- Ratio of incident irradiance to emitted radiance
- Function of
- Incoming light direction:

$$
\theta_{\text {in }}, \phi_{\text {in }}
$$

- Outgoing light direction:

$$
\theta_{\text {out }}, \phi_{\text {out }}
$$

$$
\rho\left(\underline{x} ; \theta_{\text {in }}, \phi_{\text {in }} ; \theta_{\text {out }}, \phi_{\text {out }}\right)=\frac{L_{o}\left(x ; \theta_{\text {out }}, \phi_{\text {out }}\right)}{L_{i}\left(x ; \theta_{\text {in }}, \phi_{\text {in }}\right) \cos \phi_{\text {in }} d \omega}
$$

The Reflection Equation

$$
L_{r}\left(x, \omega_{r}\right)=\int_{H^{2}} f_{r}\left(x, \omega_{i} \rightarrow \omega_{r}\right) L_{i}\left(x, \omega_{i}\right) \cos \theta_{i} d \omega_{i}
$$

Surface Reflectance Models

Lambertian

- Phong
- Physics-based
- Specular
- Diffuse
- Generalized Lambertian
- Thoroughly Pitted Surfaces
- Phenomenological

Lambertian (Diffuse) Surface

- BRDF is a constant called the albedo
- Emitted radiance is NOT a function of outgoing direction - i.e. constant in all directions.
- For lighting coming in single direction, emitted radiance is proportional to cosine of the
 angle between normal and light direction

$$
L_{r}=N . \omega_{\imath}
$$

Lambertian reflection

- Lambertian
- Matte
- Diffuse

Light is radiated equally in all directions

Specular Reflection: Smooth Surface

Rough Specular Surface

Symmetrie $\begin{gathered}\text {-shiped }\end{gathered}$ Erowres - 'microliwets'

Phong Lobe

Phong Model

