
1

CS291-J00, Winter 2003  David Kriegman, 2003

Face ModelingFace Modeling

Topics in Image-Based Modeling and Rendering
CSE291 J00
Lecture 17
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FacesFaces

From Romdhani slides
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ApproachesApproaches

• 2-D Models – morphing, indexing, etc.
• Parameterized face models – e.g. muscle, FACS, etc.
• 3-D modeling, minimal face priors, [Georghiades et 

al ]
• 3D modeling, face prior  [Pighin et al]
• 3D modeling, learned prior, [Blanz, Vetter]
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Parameterized face modelsParameterized face models

Muscle-based:
• Waters K., A Muscle Model for Animating Three-

Dimensional Facial Expression.  SIGGRAPH 1987
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AnatomyAnatomy

From presentation by W. Chang, P. Salmon
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Skin as MeshSkin as Mesh

• Nodal mobility
– Tensile Strength of skin
– Proximity to muscle attachment
– Depth of tissue & proximity to bone
– Elasticity & interaction with other muscles

• Network of springs
– p = F/k



4

CS291-J00, Winter 2003  David Kriegman, 2003

Mesh expression examplesMesh expression examples
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ImageImage--Based Rendering: Attached ShadowsBased Rendering: Attached Shadows

Single Light Source Face Movie
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LambertianLambertian Surface:  Surface:  ρρ((θθinin, , φφin in ; ; θθoutout, , φφoutout)=constant)=constant
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At image location (u,v), the intensity of a pixel I(u,v) is:

II(u,v) = [a(u,v) n(u,v)]    [s0s ]
= b(u,v)   s

where
• a(u,v) is the albedo of the surface projecting to (u,v).
• n(u,v) is the direction of the surface normal.
• s0 is the light source intensity.
• s is the direction to the light source.
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Lambertian model without shadowing:

where 
I is an n-pixel image vector
B  is a matrix whose rows are unit normals scaled by the albedos

s ∈ R3 is a vector of  the light source direction scaled by intensity
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Image Formation Model: No shadowsImage Formation Model: No shadows
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ComputingComputing LL
For k images  X= [ x1, x2, …, xk ] imaged under k unknown point 

light sources  S = [s1, s2, …, sk] , 
X = B SX = B S

Given  k ≥ 3 images  we can compute B* that spans L with 
1. singular value decomposition  
2. or methods robust to outliers.

[ ] [ ]
*B[ ]...54321 xxxxx
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FactoringFactoring
Given an n by m data matrix X containing measured feature points, it can 

be factored using singular value decomposition as:

Where
D: m by m diagonal matrix, non-negative entries, called singular 

values
U: n by m with orthogonal columns
VT: m by m with orthogonal columns
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• Without noise, σi =0, i>3
• With noise, set σi =0, i>3
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Factoring: After setting Factoring: After setting σσii=0, i>3=0, i>3

Where
D’: 3 by 3 diagonal matrix, non-negative entries
U:  n by 3 with orthogonal columns
VT: 3 by n with orthogonal columns
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Face BasisFace Basis
Original Images

Basis Images spanning L
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ImageImage--Based Rendering: Attached ShadowsBased Rendering: Attached Shadows

Single Light Source Face Movie
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What do you see?What do you see?

•• Changing viewpointChanging viewpoint

•• Moving light sourceMoving light source

•• Deforming shapeDeforming shape
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What was happeningWhat was happening

•• Changing viewpointChanging viewpoint

•• Moving light sourceMoving light source

•• Deforming shapeDeforming shape
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Do Ambiguities Exist?Do Ambiguities Exist?

Can two objects of differing shapes and reflectance functions 
produce the same set of images?

Object 1 Object 2
Same

Images?
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Do Ambiguities Exist?  Do Ambiguities Exist?  YesYes

• Set of images is determined by linear 
subspace L

• The columns of B span L

• For any  A ∈ GL(3), B* = BA also spans L ,                
i.e. X = B*S* = B AA-1S

•
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Illumination SubspaceIllumination Subspace

L = {I | I = Bs, for all s ∈R3 }
I 1

I 2

I 3

L0L

• L is a 3-D linear subspace of image space, Rn.
• L is spanned by 3 linearly independent images.

b1

b2
b3

s
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From Normals to SurfacesFrom Normals to Surfaces

• Both B* = BA and B generate the same 
illumination cone.

• A question arises:

Since B/|B| is the normal field of a surface z=f(x,y),            
is B* /| B* | also the normal field  of a surface? 
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Surface IntegrabilitySurface Integrability

In general, B* does not have a corresponding surface.

Linear transformations of the surface normals in general do not 
produce an integrable normal field.

B B*A
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Surface IntegrabilitySurface Integrability

A surface f(x,y) must satisfy the following constraint:

Thus, b must satisfy

where
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GBR TransformationGBR Transformation
Only Generalized Bas-Relief transformations satisfy the  integrability 

constraint:
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Generalized BasGeneralized Bas--Relief TransformationsRelief Transformations

Without knowledge Without knowledge 
of light source of light source 
location, one can location, one can 
only recover  only recover  
surfaces up to GBR surfaces up to GBR 
transformations.transformations.
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What about cast shadows for What about cast shadows for nonconvexnonconvex objects?objects?

P.P. Reubens in Opticorum Libri Sex, 1613
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GBR Preserves ShadowsGBR Preserves Shadows

Given a surface f and a GBR transformed 
surface  f’ then for every light source 
s which illuminates f there exists a 
light source s’ which illuminates f’
such that the attached and cast
shadows are identical.

GBR is the only only transform that 
preserves shadows.

[Kriegman, Belhumeur 2001]
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BasBas--Relief SculptureRelief Sculpture
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CodexCodex UrbinasUrbinas

As far as light and shade are concerned low relief fails both as
sculpture and as painting, because the shadows correspond to the 
low nature of the relief, as for example in the shadows of 
foreshortened objects, which will not exhibit the depth of those in 
painting or in sculpture in the round.

Leonardo da Vinci 
Treatise on Painting  (Kemp)
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GBR and ReconstructionGBR and Reconstruction
Proposition: From as few as three images of a Lambertian surface, taken 

under different lighting conditions, we can reconstruct the surface up 
to a Generalized Bas-Relief transformation – without knowledge of the 
light sources. (See also Fan & Wolff 97.)

Images                B’                    f ’(x,y)
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ImageImage--Based Rendering: Cast ShadowsBased Rendering: Cast Shadows
Note: GBR is NOT resolvedNote: GBR is NOT resolved

Single Light Source Face Movie
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Recovering a GBR surfaceRecovering a GBR surface

1. Estimate a matrix A that makes B*A close to integrable.

2. Integrate the vector field or fit a surface z(x,y) to the vector 
field minimizing

Where p, q are estimates of the gradient (zx, zy) from B*A.

∫ ∫ −+− dxdyqzpz yx
22 )()(
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ImageImage--Based Rendering: Attached ShadowsBased Rendering: Attached Shadows

Single Light Source Face Movie
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Resolve GBRResolve GBR

• Symmetry
• Canonical face model
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Resolve GBR using face informationResolve GBR using face information
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Synthesizing Realistic Facial Synthesizing Realistic Facial 
Expressions from PhotographsExpressions from Photographs

• 3D facial models derived from photographs.
• Smooth transitioning between model expressions.
• Adaptation from one model to another.

• F. Pighin, J. Hecker, D. Lischinski, D. H. Salesin, R. Szeliski. 
Synthesizing realistic facial expressions from photographs. 
SIGGRAPH 98, pp. 75-84.
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• Capture multiple views of a human subject
• Manually mark a small set of correspondence points
• Automatically recover camera parameters

as well as 3D position of marked points in space
• Deform a generic 3D face mesh to fit the particular 

human subject (Model fitting)
• Extract one or more texture maps for the 3D model from 

the photos
• Repeat for several facial expressions
• Perform facial animation: interpolation between two or 

more 3D models while blending the texture

ApproachApproach

CS291-J00, Winter 2003  David Kriegman, 2003

Model FittingModel Fitting

• Adapt generic face model to fit an individual face and facial 
expression

• Input

– Several images of the face from different view points
– General face 3D model

• Output
Face model that has been adapted to fit the face in input images

Model fitting process:
• Pose recovery
• Scattered data interpolation
• Correspondence-based shape refinement
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Generic head modelGeneric head model
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Input images with marked feature pointsInput images with marked feature points
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Pose RecoveryPose Recovery
• Start with a rough knowledge of camera position
• Interactively improve the pose and 3D shape

• Some mathematics…

RRkk -- rotation matrix, composed of three rows,rotation matrix, composed of three rows,
rrkk

xx, , rrkk
yy, , rrkk

zz..

ttkk -- translation vector with three entries,translation vector with three entries,
ttkk

xx, , ttkk
yy, , ttkk

zz..

ffkk -- Focal LengthFocal Length
ppii -- 3D coordinate of a specific face feature3D coordinate of a specific face feature
xxkk

ii, , yykk
ii -- 2D coordinate in the 2D coordinate in the k’thk’th imageimage
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Pose Recovery Pose Recovery –– cont.cont.
Each pixel coordinate is given by:

k
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k
z

k
xi

k
xkk

i tpr
tpr

fx
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k
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SubstitutingSubstituting
??kk = 1 / = 1 / ttkk

zz Inverse distanceInverse distance
SSkk = = ffkk * * ??kk World to image scale factorWorld to image scale factor
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Pose Recovery Pose Recovery –– cont.cont.
Let wk

i be the inverse denominator

0))()(( =+−+ k
xi

k
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k
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k
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k
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Collecting the terms on the leftCollecting the terms on the left--hand sidehand side
to yield:to yield:
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i

k
i tprspryyw η

(2)
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Pose Recovery Pose Recovery –– cont.cont.
The above equations are solved as follows:
• Maximum likelihood estimation of initial values is 

obtained using least squares
• Solving the equation for different subsets of unknowns, 

in five steps:
first sk, then pi, Rk, tk

x and tk
y,

and finally ?k using linear least squares algorithm
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3D Face Model3D Face Model

Generic model Fit to 13 pts

CS291-J00, Winter 2003  David Kriegman, 2003

3D face model refinement3D face model refinement

112 points
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Scattered Data InterpolationScattered Data Interpolation
Once an initial set of coordinates for the feature points pi have 
been computed, these values are used to deform the 
remaining vertices on the face mesh

The interpolation function:

∑ ++−=
i

ii tMpppcpf )()( φ
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ViewView--independent texture mappingindependent texture mapping
• The texture map is constructed on a virtual cylinder 

enclosing the face model
• mk is now indexed by the (u, v) texture coordinates; mk = 

Fk(u,v)Pk(p)
– Fk - Feathered visibility map (0 - 1)
– Pk(p) – positional certainty of p
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View Independent Texture ExtractionView Independent Texture Extraction

• Blend photographs to form single texture.
– Map onto virtual cylinder.
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ViewView--dependent texture mappingdependent texture mapping

• Associate texture coordinate and a blending weight for 
each vertex in the face mesh

• Two photographs which are closest to the viewing 
direction d, are blended using a blending function Vk(d)

• mk = Fk(xk,yk)Pk(p)Vk(d)

Special treatment for eyes, teeth, ears and hair
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View Independent Texture ExtractionView Independent Texture Extraction

• Blurry
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Expression morphingExpression morphing
• Goal: generation of continuous and realistic  transitions 

between different facial expressions
• Geometry interpolation

– Topology of all the faces meshes is identical –
simple linear interpolation

• Blending the textures
– Rendering intermediate face twice
– Blending is done on the 2D images

• Global blend
• Local blend
• Animation and derivative animations
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ResultsResults
• Show movie
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ResultsResults
• Applied transitions to different human subject:



28

CS291-J00, Winter 2003  David Kriegman, 2003

• A morphable model for the synthesis of 3D faces  
Volker Blanz, Thomas Vetter,  SIGGRAPH 99, 
pp. 187 – 194.
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3D Shape

3D Morphable Model 3D Morphable Model -- Key Features Key Features 
111. Representation = 3D Shape + Texture Map

Texture Map

s

t
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3D Morphable Model 3D Morphable Model -- Key Features 2Key Features 2
2. Accurate & Dense Correspondence

à PCA accounts for intrinsic ID parameters only

2α+ ⋅ 3α+ ⋅ 4α+ ⋅1s α= ⋅ = ⋅S a

4β+ ⋅3β+ ⋅2β+ ⋅1t β= ⋅ = ⋅T ß

+ ...

+ ...
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Building a Building a MorphableMorphable ModelModel

• Align training set using range data and reflectance from 
cyberware data

• Optical flow
• PCA on Depth & texture

• Initial model

• Re-register all data with model
• Recompute PCA with increasing subspace Dimension
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Deviation from Deviation from protoypeprotoype
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3D Morphable Model 3D Morphable Model -- Key Features 3Key Features 3

3. Extrinsic parameters modeled using Physical Relations:
- Pose : 3x3 Rotation matrix

- Illumination : Phong shading accounts for cast 
shadows and specular highlights 
à No Lambertian Assumption.
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3D Morphable Model 3D Morphable Model -- Key Features 4Key Features 4
4. Photo-realistic images rendered using Computer Graphics
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Model Fitting : DefinitionModel Fitting : Definition

Iterative
Model
Fitting

,a ß,?

Model
Rendering

( , )mI x y
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Model Fitting: Standard Optimization TechniquesModel Fitting: Standard Optimization Techniques
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MaterialsMaterials

• Materials from this lecture were taken from the papers by the authors 
listed previously, and ppt slides by
– Sami Romdhani Volker Blanz Thomas Vetter
– Gustavo Halperin, Avishay Sidlesky


