
1

UCSD 1

Texture Mapping And Texture
Synthesis

Spring CSE 291

Cindy Wang

02/20/03

UCSD 2

Part 1-- Fundamentals of Texture Mapping
Mapping
Scanning algorithm
Anti-aliasing

Part 2--Non – Parametric Sampling Texture
Synthesis

Algorithm overview
Details
Limitation

Organization

UCSD 3

Reference

Paul S. Heckbert. Survey of Texture Mapping,
IEEE Computer Graphics and Applications, Nov.
1986.
http://www-2.cs.cmu.edu/~ph/texsurv.pdf
Paul S. Heckbert. Fundamentals of Texture
Mapping and Image Warping, Master’s Thesis,
University of California, Berkeley,1989.
http://www2.cs.cmu.edu/~ph/texfund/texfund.
pdf

UCSD 4

Introduction
Texture Mapping
texture mapping is a successful technique to
create high-quality image synthesis without
the tedium of modeling and rendering every
details of a surface
Results depend on some key elements
ü Mapping
ü Filtering
ü Sampling

2

UCSD 5

Coordinate Systems
qTexture Space

ü 2-D space of surface textures

qObject Space
ü 3-D coordinate system in which geometries are

defined

qWorld Space
ü A global coordinate system that is related to each

object’s local object space using 3d modeling
transformations

qScreen Space
ü The coordinate system of display

UCSD 6

Goal of Texture Mapping

qDefinition
üthe mapping of a function onto a surface in 3-D

q2-step mapping process
üThe source image(texture) is mapped onto a surface
in 3-D object space
üThe surface is then mapped to the destination
image by the viewing projection

UCSD 7

Spaces mapping

Texture Space (2D)

Object Space (3D)

World Space (3D)

Screen Space
(3D) (z buffer)

Screen Space (2D)

parameterization
projection

rendering

(u, v) (x, y)

UCSD 8

Parameterization

Mapping a 2-D texture onto a 3-D
surface requires surface
parameterization
Affine mapping
Bilinear mapping
Perspective mapping

3

UCSD 9

Affine mapping

q scales, rotations, translations,shears

qPreserve parallel lines and equispaced points along lines

qTriangle keeps shape after mapping

o vertices have Au+Bv+C form

UCSD 10

Bilinear mapping

qMapping a square into quadrilateral
qPreserve horizontal / vertical lines
qDiagonal lines are distorted

UCSD 11

Example of Bilinear mapping

UCSD 12

Perspective Mapping
A better parameterization choice for
planar quadrilaterals
Preserve lines at all orientations
Sacrifice equal spacing

4

UCSD 13

Comparison of mappings

Yes

No

Yes

Invertibl
e
matrix

8NoNoYesPerspec-
tive

8Not
diagonals

NoNot
diagonals

Bilinear

6YesYesYesAffine

Degree of
freedom

Preserve
equi-
distance

Preserve
parallel

Preserve
lines

UCSD 14

Screen scanning

For y (screen row)
For x (screen column)

Compute u(x,y) and v(x,y)
copy SCR[x,y] = TEX[u,v]

most common
mapping invertible
random access texture

UCSD 15

For v (texture row)
For u (texture column)

Compute x(u,v) and y(u,v)
SCR[x,y] = TEX[u,v]

simple
invertible
can result in holes and overlaps

Texture Scanning

UCSD 16

For v
for u

compute x(u,v)
copy TEX[u,v] to Temp[x,v]

For x
for v

compute y(x,v)
copy Temp[x,v] to SCR[x,y]

Work well for affine and perspective mapping

Two pass

5

UCSD 17

Aliasing

Aliasing is a result of
high frequency signals
Moiré pattern near
horizon
High frequency:
black/white alternate
frequently

UCSD 18

Anti-Aliasing

Point sample at high frequency
Associate sample rate with local intensity
variance.

Low pass filtering before sampling
Preferable
Input must be band-limited (can be solved
by signal processing knowledge)

UCSD 19

Four steps of Anti-Aliasing
Reconstruct continuous signal
Warp the signal
Low pass filter the signal
Resample the signal

UCSD 20

Space Variant Filtering

Shape varies with space location
Pre-image of pixels approximated
as quadrilaterals or ellipses
Cross sectional shape:

Ideal Filter: sinc(x)
Practical Filter: box, triangular, cubic
B-spine, Gaussian

6

UCSD 21

Direct Convolution

Computes weighted average of texture
maps
Previous works
EWA (Elliptical Weighted Average)
Cost per screen pixel: proportional to
the number of texture pixels

UCSD 22

EWA

qEWA (Elliptical Weighted Average) filter
qSpace-variant filter
qPixels circular and overlapping
qWeighted average from concentric ellipses
qComputes average in texture space

UCSD 23

EWA sample region

qArbitrarily oriented
ellipse defined by two
vectors

qUsing a biquadric
function as its radial index

UCSD 24

EWA: Space-variant

q Space-variant
sample areas
qCircle in screen
space maps to
ellipse in texture
space
qGreater sample
accuracy

7

UCSD 25

Prefiltering

Purpose
Speed up filtering process

Two data structures
Pyramid—most commonly used
Integrated array

UCSD 26

Pyramid

A hierarchical data structure
Building pyramid

Divide texture as n*n texture areas
Build pyramid iteratively

Space complexity
4/3 of original data

UCSD 27

Pyramid

Assume pre-image texture area is
squares
Compute texture value by using trilinear
interpolation method
Each screen pixel requires at most 8
texture data

UCSD 28

Result of anti-aliasing

8

UCSD 29

Part 2: Texture Synthesis by
Non-parametric Sampling

UCSD 30

Reference

Alexei A. and Thomas K Leung
Texture Synthesis by non-parametric sampling
IEEE International Conference on Computer
Vision,Corfu,Greece, September 1999

UCSD 31

Problem of texture synthesis

ü Define texture as some visual pattern on an
infinite 2D plane , which, at some scale, has a
stationary distribution

ü Given a finite sample from some texture (an
image).

ü Assume: the sample is large enough

ü Goal: to synthesize other samples from the
same texture

UCSD 32

Infinite texture

Input

synthesis

Generated image

9

UCSD 33

The challenge
Traditionally, textures can be
classified as

Regular
Stochastic

In real life, textures lie
between these two extremes
and need a single model
So, how to analyze and model
textures?

repeated

stochastic

Both??
UCSD 34

Problem of producing language

Shannon proposed a way of generating
English-looking text using N-grams
Basic idea:

Assume a generalized Markov chain
Using a large sample language, compute probability
distributions of each letter given N-1 previous letter
Repeatedly sample the Markov chain to produce new
letters

UCSD 35

Non parametric sampling Algorithm

Motivated by the way of modeling language
using Markov chain
Texture is “grown” pixel by pixel, outwards
from an initial seed.
Model texture as a MRF
conditional pdf of pixel given its neighbors
synthesized thus far is computed directly
from the sample image

UCSD 36

Synthesizing one pixel

Infinite sample
image

Generated image

SAMPLE

p

– Assuming Markov property,
– Compute conditional probability distribution of p, given the
neighborhood window
– Instead of constructing a model, directly search the input image
for all such neighborhoods to produce a histogram for p
– To synthesize p, just randomly pick one

10

UCSD 37

Compute probability distribution
Based on MRF, assume p is independent of
I\w(p).
Define a set

}0))(,(:{)(=′⊂′=Ω pwwdIwp percreal

• Estimate conditional pdf of p with a histogram
of all center pixel values in)(pΩ

UCSD 38

Practical synthesizing a pixel

• In practice, find
}))(,(:{)(ε<′⊂′=Ω′ pwwdIwp bestpercrealbest

)()(pp Ω≈Ω′

• So we find the best match using normalized
sum of squared distances metric –SSD error.

ü weighted by a Gaussian to emphasize
local structure, and take all samples within
some distance from that match

UCSD 39

Synthesizing a texture

Ø Take 3*3 random patch from sample as a seed

Ø Only match on the known values in the window w(p)

Ø Still use Gaussian-weighted SSD to compute pdf of p

UCSD 40

Some details

This algorithm doesn’t guarantee the pdf
of p is valid
So, we should note:
ü Synthesize those pixels which have most

known neighborhood pixels first
üUsing Gaussian – weighted SSD is important

ü To make sure the new pixel agrees with its closest
neighborhood pixels

üApproximates reduction to a smaller
neighborhood window if data is too sparse

11

UCSD 41

Randomness parameter
The width w of the window size is the only
parameter to be set by users.
The randomness of texture changes with
window size parameter
Window size should be large enough to
capture the stationary of sample texture

UCSD 42

An example

UCSD 43

More Results…

sample

5 11 15 23

UCSD 44

More Results…

5 15 23

12

UCSD 45

Real world textures

aluminum wire

reptile skin

UCSD 46

Real world
french canvas

rafia weave

UCSD 47

More results
wood

granite

UCSD 48

Constrained texture synthesis

13

UCSD 49

Image Extrapolation

UCSD 50

Extension to 3D sphere

2D

Sample image

UCSD 51

Limitations

•The algorithm is time-consuming

•For some textures, the algorithm will slip into a
wrong search space and start growing garbage

•Or, get stuck at some place in the sample image
and produce verbatim copies of the original

UCSD 52

Failure Examples

Growing garbage Verbatim copying

14

UCSD 53

The End

