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Part 1-- Fundamentals of  Texture Mapping
Mapping
Scanning algorithm
Anti-aliasing

Part 2--Non – Parametric Sampling Texture 
Synthesis

Algorithm overview
Details
Limitation 

Organization
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Reference

Paul S. Heckbert. Survey of Texture Mapping, 
IEEE Computer Graphics and Applications, Nov. 
1986.
http://www-2.cs.cmu.edu/~ph/texsurv.pdf
Paul S. Heckbert. Fundamentals of Texture 
Mapping and Image Warping, Master’s Thesis, 
University of California, Berkeley,1989.
http://www2.cs.cmu.edu/~ph/texfund/texfund.
pdf
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Introduction
Texture Mapping
texture mapping is a successful technique to 
create high-quality image synthesis without 
the tedium of modeling and rendering every 
details of a surface
Results depend on some key elements
ü Mapping
ü Filtering
ü Sampling
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Coordinate Systems  
qTexture Space

ü 2-D space of surface textures

qObject Space
ü 3-D coordinate system in which geometries are 

defined

qWorld Space
ü A global coordinate system that is related to each 

object’s local object space using 3d modeling 
transformations

qScreen Space
ü The coordinate system of display
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Goal of Texture Mapping

qDefinition
üthe mapping of a function onto a surface in 3-D 

q2-step mapping process
üThe source image(texture) is mapped onto a surface 
in 3-D object space
üThe surface is then mapped to the destination 
image by the viewing projection
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Spaces mapping

Texture Space (2D)

Object Space (3D)

World Space (3D)

Screen Space 
(3D) (z buffer)

Screen Space (2D)

parameterization
projection

rendering

(u, v) (x, y)

UCSD 8

Parameterization 

Mapping a 2-D texture onto a 3-D 
surface requires surface 
parameterization
Affine mapping
Bilinear mapping
Perspective mapping
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Affine mapping

q scales, rotations, translations,shears

qPreserve parallel lines and equispaced points along lines

qTriangle keeps shape after mapping

o vertices have Au+Bv+C form 
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Bilinear mapping

qMapping a square into quadrilateral
qPreserve horizontal / vertical lines
qDiagonal lines are distorted
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Example of Bilinear mapping
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Perspective Mapping
A better parameterization choice for 
planar quadrilaterals
Preserve lines at all orientations
Sacrifice equal spacing
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Comparison of mappings

Yes

No

Yes

Invertibl
e
matrix

8NoNoYesPerspec-
tive

8Not 
diagonals

NoNot 
diagonals

Bilinear

6YesYesYesAffine

Degree of 
freedom

Preserve 
equi-
distance

Preserve 
parallel

Preserve 
lines
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Screen scanning

For y (screen row)
For x (screen column)

Compute u(x,y) and v(x,y)
copy SCR[x,y] = TEX[u,v]

most common
mapping invertible
random access texture
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For v (texture row)
For u (texture column)

Compute x(u,v) and y(u,v)
SCR[x,y] = TEX[u,v]

simple
invertible
can result in holes and overlaps

Texture Scanning
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For v
for u

compute x(u,v)
copy TEX[u,v] to Temp[x,v]

For x
for v

compute y(x,v)
copy Temp[x,v] to SCR[x,y]

Work well for affine and perspective mapping

Two pass
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Aliasing

Aliasing is a result of 
high frequency signals
Moiré pattern near 
horizon
High frequency: 
black/white alternate 
frequently
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Anti-Aliasing

Point sample at high frequency
Associate sample rate with local intensity 
variance.

Low pass filtering before sampling
Preferable 
Input must be band-limited (can be solved 
by signal processing knowledge)
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Four steps of Anti-Aliasing
Reconstruct continuous signal
Warp the signal
Low pass filter the signal
Resample the signal
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Space Variant Filtering

Shape varies with space location
Pre-image of pixels approximated 
as quadrilaterals or ellipses
Cross sectional shape:

Ideal Filter: sinc(x) 
Practical Filter: box, triangular, cubic 
B-spine, Gaussian
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Direct Convolution

Computes weighted average of texture 
maps
Previous works
EWA (Elliptical Weighted Average)
Cost per screen pixel: proportional to 
the number of texture pixels

UCSD 22

EWA 

qEWA (Elliptical Weighted Average) filter
qSpace-variant filter
qPixels circular and overlapping
qWeighted average from concentric ellipses
qComputes average in texture space
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EWA sample region

qArbitrarily oriented 
ellipse defined by two 
vectors

qUsing a biquadric
function as its radial index 
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EWA: Space-variant

q Space-variant     
sample areas
qCircle in screen 
space maps to 
ellipse in texture 
space
qGreater sample 
accuracy
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Prefiltering

Purpose 
Speed up filtering process

Two data structures
Pyramid—most commonly used
Integrated array
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Pyramid

A hierarchical data structure 
Building pyramid

Divide texture as n*n texture areas
Build pyramid iteratively 

Space complexity
4/3 of original data
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Pyramid

Assume pre-image texture area is 
squares
Compute texture value by using trilinear 
interpolation method
Each screen pixel requires at most 8 
texture data  

UCSD 28

Result of anti-aliasing 
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Part 2: Texture Synthesis by 
Non-parametric Sampling
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Reference

Alexei A. and Thomas K Leung 
Texture Synthesis by non-parametric sampling 
IEEE International Conference on Computer 
Vision,Corfu,Greece, September 1999
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Problem of texture synthesis

ü Define texture as some visual pattern on an 
infinite 2D plane , which, at some scale, has a 
stationary distribution

ü Given a finite sample from some texture (an 
image).

ü Assume: the sample is large enough 

ü Goal: to synthesize other samples from the 
same texture
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Infinite texture

Input

synthesis

Generated image
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The challenge
Traditionally, textures can be 
classified as 

Regular
Stochastic

In real life, textures lie 
between these two extremes 
and need a single model
So, how to analyze and model 
textures?   

repeated

stochastic

Both??
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Problem of producing language

Shannon proposed a way of generating 
English-looking text using N-grams
Basic idea:

Assume a generalized Markov chain
Using a large sample language, compute probability 
distributions of each letter given N-1 previous letter 
Repeatedly sample the Markov chain to produce new 
letters
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Non parametric sampling Algorithm

Motivated by the way of modeling language 
using Markov chain
Texture is “grown” pixel by pixel, outwards  
from an initial seed.
Model texture as a MRF
conditional pdf of pixel given its neighbors 
synthesized thus far is computed directly 
from the sample image
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Synthesizing one pixel

Infinite sample 
image

Generated image

SAMPLE

p

– Assuming Markov property,
– Compute conditional probability distribution of p, given the 
neighborhood window
– Instead of constructing a model, directly search the input image 
for all such neighborhoods to produce a histogram for p
– To synthesize p,  just randomly pick one 
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Compute probability distribution
Based on MRF, assume p is independent of 
I\w(p). 
Define a set 

}0))(,(:{)( =′⊂′=Ω pwwdIwp percreal

• Estimate conditional pdf of p with a histogram 
of all center pixel values in )( pΩ
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Practical synthesizing a pixel

• In practice, find 
}))(,(:{)( ε<′⊂′=Ω′ pwwdIwp bestpercrealbest

)()( pp Ω≈Ω′

• So we find the best match using normalized 
sum of squared distances metric –SSD error.   

ü weighted by a Gaussian to emphasize 
local structure, and take all samples within 
some distance from that match

UCSD 39

Synthesizing a texture

Ø Take 3*3 random patch from sample as a seed

Ø Only match on the known values in the window w(p)

Ø Still use Gaussian-weighted SSD to compute pdf of p 
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Some details

This algorithm doesn’t guarantee the pdf
of p is valid 
So, we should note:
ü Synthesize those pixels which have most 

known neighborhood pixels first
üUsing Gaussian – weighted SSD is important 

ü To make sure the new pixel agrees with its closest 
neighborhood pixels

üApproximates reduction to a smaller 
neighborhood window if data is too sparse
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Randomness parameter
The width w of the window size is the only 
parameter to be set by users.
The randomness of texture changes with 
window size parameter
Window size should be large enough to 
capture the stationary of sample texture 
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An example
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More Results…

sample

5 11 15 23
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More Results…

5 15 23
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Real world textures 

aluminum wire

reptile skin
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Real world 
french canvas

rafia weave
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More results
wood

granite
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Constrained texture synthesis
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Image Extrapolation
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Extension to  3D sphere

2D

Sample image
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Limitations 

•The algorithm is time-consuming

•For some textures, the algorithm will slip into a 
wrong search space and start growing garbage 

•Or, get stuck at some place in the sample image 
and produce verbatim copies of the original 
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Failure Examples

Growing garbage Verbatim copying
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The End


