Bridging Shape and Reflectance

Presented by: Jongwoo Lim, Feb 182003

Rendering vs Inverse-Rendering

Radiance Maps

Lighting

Parametric BRDF's

$$
\begin{aligned}
L & =B \cdot I \\
\text { Radiance } & =\mathrm{BRDF} \cdot \text { Irradiance }
\end{aligned}
$$

Torrence-Sparrow model

$B_{T S}\left(\theta_{i}, \theta_{o}, \alpha \mid \rho_{d}, \rho_{s}, \sigma\right)=\rho_{d} \cos \theta_{i}+\frac{\rho_{s}}{\cos \theta_{o}} e^{-\alpha^{2} / 2 \sigma^{2}}$
Ward model (isotropic version)
$B_{W}\left(\theta_{i}, \theta_{o}, \delta \mid \rho_{d}, \rho_{s}, \sigma\right)=\frac{\rho_{d}}{\pi}+\frac{\rho_{s}}{4 \pi \sigma^{2} \sqrt{\cos \theta_{i} \cos \theta_{o}}} e^{-\tan ^{2} \delta / \sigma^{2}}$

Renderings with Ward BRDF

from Simon Premoze's homepage (http://www.cs.utah.edu/ premoze/brdf/)

BRDF Estimation

We need to estimate BRDF at every point on the object.

Knowns
Unknowns
Radiance L
Irradiance $I \Longrightarrow$ BRDF parameters
Surface normal $\hat{\mathbf{n}}$ $\left(\rho_{d}, \rho_{s}, \sigma\right)$
Light source direction $\hat{\mathbf{s}}$
Viewing direction $\hat{\mathbf{v}}$

Difficulties in Estimation

Estimation of specular parameters is difficult :

- The specular lobe is highly peaked
- it is difficult to observe specular points in images
- The specular term is not linear
- it requires many samples to estimate the parameter

Reflection Component Separation

We can infer the contribution of diffuse and specular part.

$$
\begin{aligned}
M & =\left[\begin{array}{ll}
M_{R} M_{G} & M_{B}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta_{i_{1}} & K\left(\theta_{o_{1}}, \alpha_{1}\right) \\
\vdots & \vdots \\
\cos \theta_{i_{N}} & K\left(\theta_{o_{N}}, \alpha_{N}\right)
\end{array}\right]\left[\begin{array}{ccc}
\rho_{D, R} & \rho_{D, G} & \rho_{D, B} \\
\rho_{S, R} & \rho_{S, G} & \rho_{S, B}
\end{array}\right] \\
& =\left[G_{D} G_{S}\right]\left[\begin{array}{c}
K_{D}^{t} \\
K_{S}^{t}
\end{array}\right]=G K
\end{aligned}
$$

Illumination Condition

Direct Illumination

- all reflected lights are from light sources
- only one reflection : light source - surface - camera

Global Illumination

- reflecting surfaces also work as light sources
- multiple reflections until being observed

Inverse Radiosity (Lambertian)

Assume Lambertian surfaces

$$
\tilde{L}_{i}=\tilde{E}_{i}+\rho_{i} \sum_{j} \tilde{L}_{j} \tilde{F}_{i j}
$$

$L_{i} \quad$ radiance (radiosity)
$E_{i} \quad$ emission (light source)
$\rho_{i} \quad$ albedo (BRDF)
$F_{i j} \quad$ form factor between patches

$$
\rho_{i}=\left(\tilde{L}_{i}-\tilde{E}_{i}\right) /\left(\sum_{j} \tilde{L}_{j} \tilde{F}_{i j}\right)
$$

Inverse Radiosity (Parametric BRDF)

radiance $=$ emission + diffuse + specular

$$
\begin{aligned}
\tilde{L}_{C_{v} P_{i}}= & \tilde{E}_{C_{v} P_{i}}+ \\
& +\rho_{d} \sum_{j} L_{P_{i} A_{j}} \tilde{F}_{P_{i} A_{j}} \\
& +\rho_{s} \sum_{j} L_{P_{i} A_{j}} K_{C_{v} P_{i} A_{j}}
\end{aligned}
$$

Inverse Radiosity (Parametric BRDF)

Radiance from one point can vary with viewing directions.

$$
\begin{aligned}
L_{P_{i} A_{j}} & =\tilde{L}_{C_{k} A_{j}}-S_{C_{k} A_{j}}+S_{P_{i} A_{j}} \\
& =\tilde{L}_{C_{k} A_{j}}+\Delta S_{C_{k} P_{i} A_{j}}
\end{aligned}
$$

Iteratively estimate ΔS with initial guess $\Delta S=0$

Inverse Global Illumination Algorithm

Assume constant BRDF over each patch

- Detect specular highlights on surfaces (geometrically)
- Choose sample points inside \& around each highlight
- Build links between sample points and patches
- Assign L_{0} with average radiance value, and $\Delta S=0$
- Iterate
- Update L using ΔS of each link
- Optimize each surface's BRDF parameters
- Estimate ΔS with new BRDF parameters

Monte-Carlo Sampling

One-bounce approximation is enough for this purpose.

Diffuse Albedo Map

Assume constant specular property over each patch

$$
\begin{gathered}
\rho_{d}(\mathbf{x})=\pi \frac{\operatorname{Diffuse}(\mathbf{x})}{\operatorname{Irradiance}(\mathbf{x})} \\
\operatorname{Diffuse}(\mathbf{x})=L(\mathbf{x})-\operatorname{Specular}(\mathbf{x})
\end{gathered}
$$

Give lower weight on sample

- which has large specularity
- whose viewing angle is grazing the surface

Geometry

So far, we assumed that the geometry is already given.

- input by hand
- measure from the object
- laser range finder, stereo vision, shape from X, \ldots

Geometry Acquisition Procedure

1. Surface acquisition from each range image
2. Alignment of range images
3. Retrieving 3D representation

- Merging based on a volumetric representation
- Isosurface extraction

Surface Normal Estimation

Why is the surface normal important?
BRDF is evaluated at each surface points locally. For accurate estimation, precise θ, α are required.

The eigenvector of the covariance matrix of neighbor points

$$
\hat{\mathbf{n}}=\operatorname{Null}\left(\sum_{\text {neighbor }}(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{x}-\overline{\mathrm{x}})^{t}\right)
$$

Experiment Setup : Conference Room

Result : Conference Room

(a) Initial hierarchical polygon mesh, with radiances assigned from images.

Result : Conference Room

(c) Synthetic rendering of room under novel illumination.

Result : Whiteboard

Result : Mug

Synthesized object images

Reference

- Y. Sato, M. D. Wheeler, K. Ikeuchi, Object Shape and Reflectane Modeling from Observation, SIGGRAPH, 1997
- Y. Yu, P. Debevec, J. Malik, T. Haukins, Inverse Global Illumination: Recovering Reflectance Models for Real Scenes from Photographs, SIGGRAPH, 1999
- P. Debevec, J. Malik, Recovering High Dynamic Range Radiance Maps from Photographs, SIGGRAPH, 1997
- P. Debevec, Rendering Synthetic Objects into Real Scenes:

Bridging Traditional Image-based Graphics with Global Illumination and High Dynamic Range Photography, SIGGRAPH, 1998

