BRDF's and Relighting

Topics in Image-Based Modeling and Rendering CSE291 J00

Lecture 12

Environment Matte

Basic Assumption: Single ray into object, single ray out.

BRDF

Surface Reflectance Models

Common Models

- Lambertian
- Phong
- Physics-based
- Specular
- Diffuse
- Generalized Lambertian
- Thoroughly Pitted Surfaces
- Phenomenological

BRDF

Isotropic BRDF Function of Three variables

$$
\mathrm{f}_{\mathrm{r}}\left(\theta_{\mathrm{i}}, \phi_{\mathrm{i}}, \theta_{\mathrm{e}}, \phi_{\mathrm{e}}\right)=\mathrm{f}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, \theta_{\mathrm{e}}, \phi_{\mathrm{i}}-\phi_{\mathrm{e}}\right)
$$

BSSRDF

Bidirectional Subsurface Scattering Reflectance Distribution Function

Off Specular Reflection

Backscatter

BRDF

BSSRDF

Bidirectional Subsurface Scattering Reflectance Distribution Function

Materials: Conductor

Conductor +
Microgeometry

Measured BRDFs

BRDF cross-sections

Surface microstructure

Ward reflectance model

- A physically realizable variant of the Phong model (satisfies energy conservation and reciprocity).

$-\rho_{d}$: proportion of incident radiation reflected diffusely.
$-\rho_{\mathrm{s}}$: proportion of incident radiation reflected specularly.
$-\alpha$: surface roughness, or blur in specular component

Cook-Torrance Model (1982)

- Diffuse (Lambertian) and Specular and Fresnel reflection
- Microfacet model - surface is modeled as a collection of parallel symmetric V-groves called microfacets (facets are large w.r.t. wavelength, small w.r.t. pixel size).

dA

Facet distribution is given by a specific distribution (e.g., Gaussian, $D=\operatorname{kexp}(\alpha / m)^{2}$

- Facets are purely specular

Geometric Attenuation: Masking and Shadowing Geometric Attenuation $\mathrm{G}=1-\mathrm{L} 1 / \mathrm{L} 2$

\square

Fresnel Equation for Polished Copper

Reflectance as Function of Angle of Incidence for Copper

Generalized Lambertian Model (Oren, Nayar 1994)

- Like Torrance-Sparrow, but with Lambertian facets.
- Intensity doesn't fall of as quickly as function of incident illumination.

(a) $\theta_{i}=0^{\circ}$

(b) $\theta_{i}=20^{\circ}$

Velvet: A general BRDF

Portrait of Sir Thomas More, Hans Holbein the Younger, 1527

Measuring Isotropic BRDF's

Image-based: Marschner

- Known Geometry of Sample,
- From single image, one obtains 2-D slice of BRDF.

Known illumination: inverse rendering

- If one assumes that illumination and surface geometry are known in advance, one can recover samples of the BRDF from an image (Marschner; Sato \& Ikeuchi).

Empirical BRDF's

Consider a collection of basis functions $\mathrm{b}_{\mathrm{j}}\left(\theta_{\mathrm{i}}, \phi_{\mathrm{i}}, \theta_{\mathrm{e}}, \phi_{\mathrm{e}}\right)$

Represent an arbitrary BRDF as

$$
\rho\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=\sum_{j} w_{j} b_{j}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)
$$

Given measurements, estimate w_{j} to fit BRDF to data.
What is a good set of basis functions?

1. Product of spherical harmonics
2. Wavelets
3. Zernike polynomials

Phenomenological BRDF model Zernike Polynomials
 [Koenderink \& van Doorn, 1996]

- A problem with spherical harmonics, half of sphere should be zero.
- General compact representation defined on disk
- Preserve Helmholtz Reciprocity
- Preserve reciprocity/isotropy if desired
- Domain is product of hemispheres
- Same topology as unit disk, adapt basis

Zernike Polynomials

- Optics, complete orthogonal basis on unit disk using polynomials of radius

- R has terms of degree at least m . Even or odd depending on m even or odd
- Orthonormal, using measure $\rho d \rho d \phi$

"Relighting"

1. Steerable lighting

2. Lambertian Surfaces and linear subspaces
3. Arbitrary BRDF, arbitrary lighting

Superposition of lighting: An important point

If $I_{1}=R\left(S, L_{1}\right)$ is the image of a scene S under lighting L_{1} and if $I_{2}=R\left(S, L_{2}\right)$ is the image of a scene S under lighting L_{2},
then the image of the scene under lighting $L_{1}+L_{2}$ is simply

$$
\mathrm{I}_{1}+\mathrm{I}_{2}
$$

Basis functions: Example

Consider sinusoid of frequency f, we can specify any sinusoid as sum of two basis sinusoids $\cos (\mathrm{ft})$ and $\sin (\mathrm{ft})$ as:

$$
a \cos (f t)+(1-a) \sin (f t)
$$

Such basis function are sometimes called steerable functions - over some transformation of the parameter (e.g. there, (x, y) for image plane), the function can be represented as the linear combination of a finite collection of basis functions.

Steerable lighting for relighting

1. Choose a steerable basis for the lighting - all rendering lighting conditions will defined as linear combinations of the basis lighting.
2. Gather (or synthesize) images of a scene under the basis lighting.
3. Render new images by taking linear combinations of basis images.

Why does it work? Superposition

Lambertian Surface: $\rho\left(\theta_{\text {in }}, \phi_{\text {in }} ; \theta_{\text {out }} \phi_{\text {out }}\right)=$ constant

At image location (u,v), the intensity of a pixel $I(u, v)$ is:

$$
\begin{aligned}
I(u, v) & =[a(u, v) \hat{\mathbf{n}}(u, v)] \cdot\left[s_{0} \hat{\mathbf{s}}\right] \\
& =\mathbf{b}(u, v) \cdot \mathbf{s}
\end{aligned}
$$

where

- $a(u, v)$ is the albedo of the surface projecting to (u,v).
- $\hat{\mathbf{n}}(\mathbf{u}, \mathbf{v})$ is the direction of the surface normal.
- s_{0} is the light source intensity.
$\mathrm{cs29-J0} \cdot \hat{s}$ is the direction to the light source.

Image Formation Model: No shadows

Lambertian model without shadowing:
where
I is an n-pixel image vector
B is a matrix whose rows are unit normals scaled by the albedos
$\mathbf{S} \in \mathbf{R}^{3}$ is a vector of the light source direction scaled by intensity

Image Formation Model: Convex Object

Lambertian model with

$$
\mathbf{B}=\left[\begin{array}{c}
-\mathbf{b}_{\mathrm{T}_{1}}{ }^{\mathrm{T}} \\
-\mathbf{b}^{\mathrm{T}} 2^{-} \\
\cdots \\
-\mathbf{b}_{\mathbf{n}}^{\mathrm{T}}-
\end{array}\right]_{\mathrm{n} \times 3}
$$

I is an n-pixel image vector
B is a matrix whose rows are unit normals scaled by the albedos
$\mathbf{S} \in \mathbf{R}^{3}$ is a vector of the light source direction scaled by intensity

Illumination Subspace

$L=\left\{\mathbf{I} \mid \mathbf{I}=\right.$ Bs, for all $\left.\mathbf{s} \in \mathrm{R}^{3}\right\}$

- L is a 3-D linear subspace of image space, \mathbf{R}^{n}.
- L is spanned by 3 linearly independent images.
- Cone can be generated from L.
- See also [Woodham 81], [Shashua 92], [Hallinan 95], [Hayakawa 94], [Rosenholtz, Koenderink 96]

Multiple Sources: No shadows

- Consider two sources
- Light source 1: $\mathrm{I}_{1}=\mathrm{Bs}_{1}$
- Light source 2: $\mathrm{I}_{2}=\mathrm{Bs}_{2}$
- Image with both lights on:

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{Bs}_{1}+\mathrm{Bs}_{2}=\mathrm{B}\left(\mathrm{~s}_{1}+\mathrm{s}_{2}\right)
$$

So, what does this mean?

Computing \mathbf{L}

For k images $\mathrm{X}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right]$ imaged under k unknown point light sources $S=\left[s_{1}, s_{2}, \ldots, s_{k}\right]$,

$$
\mathrm{X}=\mathrm{B} \mathrm{~S}
$$

Given $k \geq 3$ images we can compute B^{*} that spans L with

1. singular value decomposition
2. or methods robust to outliers.

Lumigraph/Light Field Rendering

[Levoy, Hanrahan, 1996]
[Gortler et al, 1996]

- Set of light rays is a 4-D manifold.
- Single camera image provides a 2-D sampling of the real scene's radiance.
- Moving the camera over a 2-D surface yields a sampling of 4-D radiance (light) field $\mathrm{L}(\mathrm{u}, \mathrm{v}, \mathrm{s}, \mathrm{t})$.
- Assume lighting is fixed.

Lumigraph/Light Field Rendering

Image from new viewpoint but under same lighting is rendered by indexing each visual ray into the Lumigraph

$$
\mathrm{I}(\mathrm{x}, \mathrm{y})=\mathrm{L}(\quad, \mathrm{~s}, \mathrm{t})
$$

where u, s, t are functions of (x, y).

A not so good idea

No and Yes

- Scene depth is needed.
- Depth reconstruction method.
- Rendering method.

Can we synthesize images under novel lighting by indexing into the image set?

Why is depth needed? Correspondence

- Isotropic point light source in known position
- Calibrated camera
- Which pixel
corresponds to which light source ray?
- Which light source ray indirectly illuminates which pixel?

A 2-D schematic

Why is depth needed? Correspondence

- Isotropic point light source in known position. - Calibrated camera
- Which pixel corresponds to which light source ray?
- Which light source ray indirectly illuminates which pixel?

Depth resolves this.

Scene Depth

We would like to recover the depth λ :

$$
\mathbf{p}(\kappa)=\mathbf{o}+\lambda \overline{\mathbf{r}}
$$

Reconstruction from the Illumination Field

1. Consider fixed camera and point light source
2. Light moves over a star-shaped surface

Intensity of One Pixel: $\mathbf{I}_{\mathbf{1}}\left(\phi_{1}, \psi_{1}\right)$

This is effectively a 2-D slice of a surface point's BRDF except for

- Shadowing
- Variation in the distance between the sources and the surface point.

Double Covering of the Illumination Field

Consider the effect of moving the light over a second surface:

Relation Between Intensity Maps

When the surface point $p, s_{1}\left(\phi_{1}, \psi_{1}\right)$ and $\mathbf{s}_{\mathbf{2}}\left(\phi_{2}, \psi_{2}\right)$ are collinear (in correspondence), the measured pixel intensities are simply related by the relative $1 / \mathbf{r}^{2}$ losses.

Depth Estimation

This correspondence can be expressed as a change of coordinates $\phi_{2}\left(\phi_{1}, \psi_{1} ; \lambda\right)$ and $\psi_{2}\left(\phi_{1}, \psi_{1} ; \lambda\right)$ 。 parameterized by the depth λ. We can then estimate λ by minimizing

$$
\begin{aligned}
& O(\lambda)=\iint\left[I_{2}\left(\phi_{2}\left(\phi_{1}, \psi_{1} ; \lambda\right), \psi_{2}\left(\phi_{1}, \psi_{1} ; \lambda\right)\right)-d^{2}(\mathbf{p}(\lambda)) I_{1}\left(\phi_{1}, \psi\right)\right]^{2} d \phi_{1} d \psi_{1} \\
& \quad \begin{array}{l}
\text { where }
\end{array} d^{2}(\mathbf{p}(\lambda))=\frac{\left\|\mathbf{p}(\lambda)-\mathbf{s}_{1}\right\|^{2}}{\left\|\mathbf{p}(\lambda)-\mathbf{s}_{2}\right\|^{2}} \\
& \text { © David Kriegnan, 2003 }
\end{aligned}
$$

An apple and its depth map

A Reconstructed Depth Map

143 Images on each surface

Rendering Synthetic Images

Intersection with the sphere

- For a given image point, there is a scene point:
- Intersect light ray through P with sphere.
- Find triangle of light sources containing P.
- Interpolate pixel intensities of images corresponding to the triangle vertices \& scale by $1 / r_{\text {O David Kriegman, 2003 }}^{2}$

Rendered Images

Indexing and Interpolation: Pixel by Pixel

Application: Rendering Isolated Objects

Point Source
(not on captured surface)

Multiple Sources Area Source

Rendered Image: A Sea Shell

Isotropic point light source located between acquisition spheres.

A Moving Light Source

Embedding Objects in Synthetic Scenes

- Blue Moon Rendering Tools to render scene
- Custom surface shader to implement rendering method by indexing the illumination dataset

