Surface Light Fields for 3D Photography

Daniel Wood Daniel Azuma Wyvern Aldinger
Brian Curless Tom Duchamp
David Salesin Werner Stuetzle

3D Photography

Goals
Rendering and editing
Inputs
Photographs and geometry

Requirements
Estimation and compression

Surface light fields

Walter et al. 1997
Miller et al. 1998
Nishino et al. 1999

Lumisphere-valued "texture" maps

NOTE: Lighting remains fixed, and isn't contrllable

Overview

Scan and reconstruct geometry

Range scans
(only a few shown . . .)

Reconstructed geometry

Take photographs

Camera positions

Photographs

Register photographs to geometry

Geometry

Register photographs to geometry

User selected correspondences (rays)

Parameterizing the geometry Atlas of Charts

Assembling data lumispheres

Overview

Pointwise fairing
 Interpolation, filling in missing data

Data lumisphere

Faired lumisphere

Pointwise fairing results

Input photograph

Pointwise faired (177 MB)

Pointwise fairing

Many input data lumispheres

Many faired lumispheres

Compression

Two approaches, based on:

1. Vector quantization (VQ)
2. Singular value decomposition (SVD)

Preprocessing to improve coherence.

Many input data lumispheres

Small set of prototypes

Reflected reparameterization

Reflected reparameterization

Reflection reparameterization

- Reflect the lumispheres through their normals
- The specular lobes point in approximately the same direction, back towards the light source.

Reflected reparameterization

Before

Median removal

Median removal

Function quantization based on vector quantization

Input data lumisphere

Codebook of Iumispheres

Construct codebook using Lloyd iteration

Iterate until convergence:

1. Assign all data lumispheres to closest codeword, forming clusters.
2. Compute new codeword for each cluster by "cluster-wise" fairing.

Then split all codewords and start over.

Lloyd iteration

Input data lumispheres

Lloyd iteration

Lloyd iteration

Perturb codewords to create larger codebook

Form clusters around each codeword

Lloyd iteration

Function quantization results

Input photograph

Function quantized (1010 codewords, 2.6 MB)

Principal function analysis

Input data lumisphere

Principal function analysis results

Input photograph

PFA compressed
(Order 5-2.5 MB)

Compression comparison

Pointwise fairing (177 MB)

Function quantization
(2.6 MB)

Principal function analysis (2.5 MB)

Qualitative comparison

- PCA leads to smoother images
- Function quantization introduces artifacts such as jaggies on tail
- Function quantizatino better preserves colors in highlights and effects of interreflections

Comparison with 2-plane light field (uncompressed)

Pointwise-faired surface light field (177 MB)

Uncompressed lumigraph / light field (177 MB)

Comparison with 2-plane light field (compressed)

Compressed (PFA) surface light field (2.5 MB)

Vector-quantized lumigraph / light field (8.1 MB)

Overview

Interactive renderer screen capture

Overview

Lumisphere filtering

Simple bias function to the values in the lumisphere, making the specular lobes taller and narrower.

Original surface light field

Glossier coat

Rotating the Lighting by rotating the lumispheres...

Original surface light field

Rotated environment

Deformation

Original

Deformed

Deformation

