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Abstract

In teaching operating systems at an undergraduate level, it is very important to provide a

project that is realistic enough to show how real operating systems work, yet simple enough that

the students can understand and modify it in signi�cant ways. A number of these instructional

systems have been created over the last two decades, but recent changes in hardware and software

design, along with the increasing power of available computational resources, have changed the

basis for many of the tradeo�s made by these systems.

We have implemented an instructional operating system, called Nachos, and designed a

series of assignments to go with it. Our system includes CPU and device simulators, and runs

as a regular UNIX process. Nachos illustrates and takes advantage of modern OS technology,

such as threads and remote procedure calls, recent hardware advances, such as RISC's and

the prevalence of memory hierarchies, and modern software design techniques, such as object-

oriented programming and distributed computing.

We have used Nachos in the undergraduate operating systems class at Berkeley, with positive

results. Nachos is freely available, and we would like to see it widely used for undergraduate

instruction.

1 Introduction

In undergraduate computer science education, course projects provide a useful tool for teaching

basic concepts and for showing how those concepts can be used to solve real-world problems. A

realistic project is especially important in undergraduate operating systems courses, where many of

the concepts are best taught, we believe, by example and experimentation.

This paper discusses an operating system, simulation environment, and set of assignments that

we developed for the undergraduate operating systems course at Berkeley.

Over the years, numerous projects have been developed for teaching operating systems; among

the published ones are Tunis [Holt 1983] and Minix [Tanenbaum 1987b, Aguirre et al. 1991]. Many

of these projects were motivated by the development of UNIX [Ritchie & Thompson 1974] in the

mid 70's. Earlier operating systems, such as MULTICS [Daley & Dennis 1968] and OS/360 [Mealy

et al. 1966] were far too complicated for an undergraduate to understand, much less modify, in a

A copy of Nachos can be obtained by anonymous ftp from sprite.berkeley.edu, �le \nachos/nachos-2.0.tar". The

authors' e-mail addresses are ffaustus,procter,teag@cs.berkeley.edu. This work was supported in part by a grant from
the College of Engineering, University of California at Berkeley.
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semester. Even UNIX itself is too complicated for this purpose, but UNIX showed that operating

systems need only a few simple but powerful interfaces, and that the core of an operating system can

be written in only a few dozen pages [Lions 1977]. Indeed, the project previously used at Berkeley,

the TOY Operating System, was originally developed by Brian Kernighan in 1973.

The introduction of minicomputers, and later, workstations, also aided the development of in-

structional operating systems. Rather than having to run the operating system on the bare hardware,

computing cycles became cheap enough to make it feasible to execute an operating system kernel

using a simulation of real hardware. The operating system can run as a normal UNIX process, and

invoke the simulator when it would otherwise access physical devices or execute user instructions.

This vastly simpli�es operating systems development, by reducing the compile-execute-debug cycle

and by allowing the use of o�-the-shelf symbolic debuggers. Because of these advantages, many

commercial operating system development e�orts now routinely use simulated machines [Bedichek

1990].

However, recent advances in operating systems, hardware architecture, and software engineering

have left many operating systems projects developed over the past two decades out of date. Network-

ing and distributed applications are now commonplace. Threads are crucial for the construction of

both operating systems and higher-level concurrent applications. And the cost-performance trade-

o�s among memory, CPU speed and secondary storage are now quite di�erent from those imposed

by core memory, discrete logic, magnetic drums, and card readers.

For these reasons, we decided to design and implement a new teaching operating system and

simulation environment. Our system, called Nachos, makes it possible to give assignments that

require students to write signi�cant portions of each of the major pieces of a modern operating sys-

tem: thread management, �le systems, multiprogramming, virtual memory, and networking. We use

these assignments to illustrate concepts that we believe are necessary to understand the computer

systems of today and of the future: concurrency and synchronization, caching and locality, the trade-

o� between simplicity and performance, building reliability from unreliable components, dynamic

scheduling, the power of a level of translation, distributed computing, layering, and virtualization.

In building Nachos, we were continually faced with a tradeo� between simplicity and realism.

For example, a complete UNIX-like �le system would be too complicated for students to understand

in only a few weeks. Our approach was to build the simplest implementation we could think of for

each sub-system of Nachos; this provides students a working example, albeit overly simplistic, of

the operation of each component of an operating system. The assignments ask the students to add

functionality to this bare-bones system and to improve its performance on micro-benchmarks that

we provide. As a result of our emphasis on simplicity, the Nachos operating system is about 2500

lines of code, about half of which are devoted to interface descriptions and comments.1 It is thus

practical for students to read, understand, and modify Nachos during a single semester course.

We have used Nachos for one term as the project for the undergraduate operating systems

course at Berkeley; we then revised both the code and the assignments based on our experiences

with using it. Nachos currently runs only on DEC MIPS workstations, but we believe that it would

be straightforward to port to other platforms.

The rest of this paper describes Nachos in more detail. Section 2 provides an overview of Nachos;

Section 3 describes the Nachos assignments. Sections 4 and 5 summarize our experiences.

1The hardware simulator takes up another 2500 lines, but students need not understand the details of its operation.
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2 Nachos Overview

Like many of its predecessor instructional operating systems, the Nachos kernel and hardware simu-

lator run together in the same UNIX process.2 Nachos has several signi�cant di�erences with earlier

systems:

� Because we simulate a standard, well-documented, instruction set (MIPS R2/3000 integer

instructions [Kane 1987]), we can run normal C programs as user programs on our operating

system. In the past, operating systems projects typically simulated their own ad hoc instruction

set, requiring user programs to be written in assembly language. Because the R2/3000 is a

RISC, it can be simulated with only about 10 pages of code.

� We accurately simulate the behavior of a network of workstations, each running Nachos. We

connect Nachos \machines", each running as a UNIX process, together via sockets. A thread

on one \machine" can then send a message to a thread running on a di�erent \machine"; of

course, both are simulated on the same physical hardware.

� Our simulation is deterministic. Debugging non-repeatable execution sequences is a fact of

life for professional operating systems engineers, but it did not seem advisable for us to make

that experience our students' �rst introduction to operating systems. Instead of using UNIX

signals to simulate asynchronous devices such as the disk and the timer, Nachos maintains

a simulated time that is incremented whenever a user program executes an instruction and

whenever a call is made to certain low-level operating system routines. Interrupt handlers are

then invoked when the simulated time reaches the appropriate point.3

� Our simulation is also randomizable to add unpredictable, but repeatable, behavior. For

instance, the network simulation randomly chooses which packets to drop; provided the initial

seed to the random number generator is the same, however, the behavior of the system is

repeatable.

� Nachos is implemented in a subset of C++. Object-oriented programming is becoming more

popular, and we found that it was a natural idiom for stressing the importance of modularity

and clean interfaces in building operating systems. To simplify matters, we omitted certain

aspects of the C++ language: derived classes, operator and function overloading, and C++

streams. We also kept inlines to a minimum. Although our students did not know C++ before

taking our course, we found that they learned the language very easily.

� The Nachos assignments take a quantitative approach to operating system design. Frequently,

the choice of how to implement some piece of operating system functionality comes down to a

tradeo� between simplicity and performance. We believe that teaching students how to make

informed decisions about tradeo�s is one of the key roles of an undergraduate operating systems

course. The Nachos hardware simulation reects current hardware performance characteristics;

2Minix takes the di�erent approach of running directly on personal computers. While this approach is more

realistic, it makes debugging more di�cult.
3The one aspect of the simulation we did not make reproducible was the precise timing of network communications,

but since this came at the end of the semester, it did not seem to cause problems.
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we exploit this by having students measure the performance of their implementations on some

simple workloads that we provide.

3 The Assignments

Nachos contains �ve major components, each the focus of one assignment given during the semester:

thread management and synchronization, the �le system, user-level multiprogramming support, the

virtual memory system, and network support. Each assignment is designed to build upon previous

ones; for instance, every part of Nachos uses thread primitives for managing concurrency. This

reects part of the charm of developing operating systems: you get to \use what you build."

In this section, we discuss each of the �ve assignments, including the hardware simulation fa-

cilities and the operating system structures we provide, along with what we ask the students to

implement. Students worked in pairs, and we conducted 15 minute graded design reviews after

every assignment. We found that the design reviews were very helpful at encouraging students to

design before implementing.

3.1 Thread Management

The �rst assignment introduces the concepts of threads and concurrency. We provide students with a

basic working thread system and an implementation of semaphores; the assignment is to implement

Mesa-style locks and condition variables [Lampson & Redell 1980] using semaphores, and then to

implement solutions to a number of concurrency problems using these synchronization primitives.

For instance, we ask students to program a simple producer-consumer interaction through a bounded

bu�er, using condition variables to denote the \bu�er empty" and \bu�er full" states.

In much the same way as pointers for beginning programmers, understanding concurrency re-

quires a conceptual leap on the part of students. Contrary to Dijkstra [Dijkstra 1989], we believe

that the best way to teach concurrency is with a \hands-on" approach. Nachos helps in two ways.

First, thread management in Nachos is explicit: students can trace, literally statement by statement,

what happens during a context switch from one thread to another, both from the perspective of

an outside observer and from that of the threads involved. We believe this experience is crucial

to de-mystifying concurrency. Precisely because C and C++ allow nothing to be swept under the

covers, concurrency may be easier to understand (although harder to use) in these programming

languages than in those explicitly designed for concurrency, such as Ada [Mundie & Fisher 1986],

Modula-3 [Nelson 1991], and Concurrent Euclid [Holt 1983].

Second, a working thread system, as in Nachos, allows students to practice writing concurrent

programs and to test out those programs. Even experienced programmers �nd it di�cult to think

concurrently; a widely used OS textbook had an error in one of its concurrent algorithms that went

undetected for several years. When we �rst used Nachos, we omitted many of the practice problems

we now include, thinking that students would see enough concurrency in the rest of the project. In

retrospect, the result was that many students were still making concurrency errors even in the �nal

phase of the project.

Our thread system is based on FastThreads [Anderson et al. 1989]. Our primary goal was

simplicity, to reduce the e�ort required for students to trace the behavior of the thread system.
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Our implementation is a total of about 10 pages of C++ and a page of MIPS assembly code. For

simplicity, thread scheduling is normally non-preemptive, but to emphasize the importance of critical

sections, we have a command-line option that causes threads to be time-sliced at \random", but

repeatable, points in the program. Concurrent programs are correct only if they work when \a

context switch can happen at any time".

3.2 File Systems

Real �le systems can be very complex artifacts. The UNIX �le system, for example, has at least

three levels of indirection | the per-process �le descriptor table, the system-wide open �le table,

and the in-core inode table | before one even gets to disk blocks. As a result, in order to build a

�le system that is simple enough for students to read and understand in a couple of weeks, we were

forced to make some hard choices as to where to sacri�ce realism.

We provide a basic working �le system that is as stripped of as much functionality as possible.

While the �le system has an interface similar to that of UNIX [Ritchie & Thompson 1974] (cast

in terms of C++ objects), it also has many signi�cant limitations with respect to commercial �le

systems: there is no synchronization (only one thread can access the �le system at a time), �les

have a very small maximum size, �les have a �xed size once created, there is no caching or bu�ering

of �le data, the �le name space is completely at (there is no hierarchical directory structure), and

there is no attempt at providing robustness across machine and disk crashes. As a result, our basic

�le system takes only about 15 pages of code.

The assignment is �rst, to correct some of these limitations, and second, to improve the perfor-

mance of the resulting �le system. We list a few possible optimizations, such as caching and disk

scheduling, but it is up to the students to decide which are the most cost-e�ective for our benchmark

(the sequential write and then read of a large �le).

At the hardware level, we provide a disk simulator, which accepts \read sector" and \write

sector" requests and signals the completion of an operation via an interrupt. The disk data is stored

in a UNIX �le; read and write sector operations are performed using normal UNIX �le reads and

writes. After the UNIX �le is updated, we calculate how long the simulated disk operation should

have taken (from the track and sector of the request), and set an interrupt to occur that far in the

future. Read and write sector operations (emulating hardware) return immediately; higher level

software is responsible for waiting until the interrupt occurs.

We made several mistakes along the way of developing the Nachos �le system. In our �rst

attempt, the �le system was much more realistic than the current one, but it also took more than

four times as much code. We were forced to re-write it to cut it down to something that students

could quickly read and understand. When we handed out this simpler �le system, we did not provide

enough code for it to be completely working, leaving out �le read and write operations to be written

by the students. Although these are fairly straightforward to implement, the fact that our code did

not work meant that students had di�culty understanding how each of the pieces of the �le system

�t together.

We also initially gave students the option of which limitations to �x; from our experience, we

found that students learned the most from �xing the �rst four listed above. The result is that,

even though virtually all modern �le systems include some form of write-ahead logging or log-

structure [Rosenblum & Ousterhout 1992], the assignment now completely ignores the issue of crash
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recovery. This is simply a tradeo�; in the limited time available, we focus on how basic �le systems

work, how the �le abstraction allows disk data layout to be radically changed without changing the

�le system interface, and and how caching can be used to improve I/O performance.

3.3 Multiprogramming

In the third assignment, we provide the code to create a user address space, load a Nachos �le

containing an executable image into user memory, and then to run the program. Our initial code is

restricted to running only a single user program at a time. Students expand on this base to support

multiprogramming. Students implement a variety of system calls (such as UNIX fork and exec), as

well as a user-level shell. We also ask them to optimize the multiprogramming performance of their

system on a mixed workload of I/O- and CPU-bound jobs.

While we supply relatively little Nachos code as part of this assignment, the hardware simulation

does require a fair amount of code. We simulate the entire MIPS R2/3000 integer instruction set and

a simple single-level page table translation scheme. (For this assignment, a program's entire virtual

address space must be mapped into physical memory; true virtual memory is left for assignment

four.) In addition, we provided students an abstraction that hid most of the details of the MIPS

object code format.

This assignment requires few conceptual leaps, but it does tie together the work of the previous

two assignments, resulting in a usable, albeit limited, operating system. Because our simulator can

run C programs, our students found it easy to write the shell and other utility programs (such as

UNIX \cat") to exercise their system. (One overly ambitious student attempted to port emacs.) The

assignment illustrates that there is little di�erence between writing user code and writing operating

system kernel code, except that user code runs in its own address space, isolating the kernel from

user errors.

One important topic we chose to leave out (again, as a tradeo� against time constraints) is

the trend toward a small-kernel operating system structure, where pieces of the operating system

are split o� into user-level servers [Wulf et al. 1974]. Because of its modular design, it would

be straightforward to move Nachos towards a small-kernel structure, except that (i) we have no

symbolic debugging support for user programs and (ii) we would need a stub compiler to make it

easy to make procedure calls across address spaces.

3.4 Virtual Memory

Assignment four asks students to replace their simple memory management code from the previous

assignment with a true virtual memory system, that is, one that presents to each user program the

abstraction of an (almost) unlimited virtual memory size by using main memory as a cache for the

disk. We provide no new hardware or operating system components for this assignment.

The assignment has three parts. First, students implement the mechanism for page fault handling

| their code must catch the page fault, �nd the needed page on disk, �nd a page frame in memory

to hold the needed page (writing the old contents of the page frame to disk if it is dirty), read

the new page from disk into memory, adjust the page table entry, and then resume the execution

of the program. This mechanism can take advantage of what the students have built in previous
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assignments: the backing store for an address space can be simply represented as a Nachos �le, and

synchronization is needed when multiple page faults occur concurrently.

The second part of the assignment is to devise a policy for managing the memory as a cache

| for deciding which page to toss out when a new page frame is needed, in what circumstances

(if any) to do read-ahead, whether or not to write unused, dirty pages back to disk in advance to

speed later page fault handling, and how many pages to bring in before initially starting to run a

program [Levy & Lipman 1982, Le�er et al. 1989].

These policy questions can have a large impact on overall system performance, in part because

of the large and increasing gap between CPU speed and disk latency | this gap has widened by

two orders of magnitude in only the last decade. Unfortunately, the simplest policies often have

unacceptable performance. To encourage students to implement realistic policies, the third part of

the assignment is to measure the performance of the paging system on a benchmark we provide

| a matrix multiply program where the matrices do not �t in memory. This workload is clearly

not representative of real-life paging behavior, but it is simple enough that students can understand

the impact of policy changes on the application. Further, the application illustrates some of the

problems with caching | small changes in the implementation of matrix multiply can have a large

impact on performance [Lam et al. 1991].

3.5 Networking

Although distributed systems have become increasingly important commercially, most instructional

operating systems have not included any networking components. To address this, the capstone of

the project is to write a signi�cant and interesting distributed application.

At the hardware level, we simulate the behavior a network of workstations, each running Nachos,

by connecting the UNIX processes running Nachos via sockets. The Nachos operating system and

user programs running on it can communicate with other \machines" running Nachos simply by

sending messages into the emulated network; the transmission is actually accomplished by socket

send and receive. The Nachos network provides unreliable transmission of limited-size packets from

machine to machine. The likelihood that any packet will be dropped can be set as a command-line

option, as can the seed used to choose which packets are randomly chosen to be dropped. Packets

are dropped but never corrupted, so that checksums are not required.

To demonstrate how to use the network and at the same time, how to take advantage of layering,

we built a simple post o�ce protocol on top of the network. The post o�ce layer provides a set

of \mailboxes" that serve to route incoming messages to the appropriate waiting thread. Messages

sent through the post o�ce also contain a return address to be used for acknowlegements.

The assignment is �rst to implement protocol layers to provide for the reliable transmission of

arbitrary-sized messages, and then to build a distributed application on top of that service. The

fragmentation protocol is straightforward to implement | one need merely to split the message into

pieces, add fragment serial numbers, and send them one by one. Reliability is more interesting,

requiring a careful analysis and design to be implemented correctly.

The choice of how to complete the project is left up to the students' creativity. We did make a

few suggestions: multi-user UNIX talk, a distributed �le system with caching, a process migration

facility, distributed virtual memory, a gateway protocol that is robust to machine crashes. Perhaps

the most interesting application a student built was a distributed version of the \battleship" game,
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with each player on a di�erent machine. This illustrated the role of distributed state, since each

machine kept only its local view of the gameboard; it also exposed several performance problems in

our hardware simulation code which we have since �xed.

Perhaps the biggest limitation of our current implementation is that we do not model network

performance correctly, because we do not keep the timers on each of the Nachos machines synchro-

nized with one another. There are well-known ways of doing this [Chandy & Misra 1981, Je�erson

et al. 1987], but we have not implemented one of them yet. With this, we would have been able to

include a benchmark of the student's network protocols; it would also allow students to implement

a parallel algorithm (albeit using message-passing) as the �nal part of the project.

4 Lessons Learned

Designing and implementing Nachos taught us a lot about how instructional software should be put

together, and provided insights on how students learn about complex systems. In this section, we

discuss some of the lessons that we learned.

In devising the assignments, we had to decide which pieces of the Nachos code to provide students

and which pieces to leave for students to write themselves. At one extreme, we could have provided

students only the hardware simulation routines, leaving a tabula rasa for students to build an entire

operating system from scratch. This seemed impractical, given the scope of what we wanted students

to achieve during the semester.

Thus, when we taught the course for the �rst time, our goal was to provide students with the

mundane and/or technically di�cult parts of the operating system, such as generic list and bitmap

management routines on the one hand, and low level thread context switch code on the other. We

did this by writing the entire operating system from scratch, and then ripping out the parts that we

thought students should write for themselves.

We found, however, that code (if simple enough), can be very useful at illustrating how some

piece of the operating system should behave. The key is that the code has to be able to run

standalone, without further e�ort on the part of students. Our thread system, although limited,

could show exactly what happens when one thread relinquishes a processor to another thread. By

contrast, when we provided students with less than a working �le system, students had di�culty

understanding how the pieces of the �le system �t together. Similarly, we initially left to students

the de�nition of the system call interface, including how parameters were to be passed from user

code to the kernel. A simple example would have largely eliminated the resulting confusion.

Of course, reading code by itself can be a boring and pointless exercise; we addressed this by

keeping our code as simple as possible, and by asking students to modify it in fairly fundamental

ways. The result is that the assignments focus on the more interesting aspects of operating systems,

where tradeo�s exist so that there is no single right answer.

Another lesson that we learned from using Nachos for a semester was the need to add a quanti-

tative aspect to the assignments. We explicitly encouraged students to implement simple solutions

to the assignments, to avoid sprawling complexity. But because we initially had no standard bench-

marks for measuring the performance of student implementations, we had no counterbalance to show

when complexity was justi�ed. Students tended to devise overly simplistic solutions, where only a

bit more e�ort was needed to be realistic. We hope that the performance tests that we've added
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will encourage students to identify which added complexity is justi�ed by its bene�ts.

5 Conclusions

We have written an instructional operating system, called Nachos. It is designed to take advantage

of advances in hardware and software technology, and to illustrate the principles of modern operating

systems. These include concurrency, caching, and distributed computation. We have used Nachos

for one semester in the undergraduate operating systems course at Berkeley, and the results were

positive. We plan to use Nachos in future semesters, and we have made it publicly available in the

hope that others will also �nd it useful.
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