CSE 130: Programming Languages Oct. 9, 2000

Lecture Notes on functional programming

Instructor: Daniele Micciancio

This notes supplement chapter 14 in the text-book. See the text-book for a gen-
eral discussion about functional programming, and an introduction to the SCHEME
functional programming language.

1 Functions and the A-calculus
In mathematics, functions are usually defined using the following notation
flz):z+1

or equivalently
fire—ax+1

meaning that function f maps x to x + 1. This notation serves two purposes:
e Define a function, in this case the increment function
e Give a name to this function, in this case f.

In our study of programming languages, and functional programming in particular,
is useful to separate these two issues. The A-calculus gives a notation that can be
used to define functions without explicitly naming them. For example, one can write

(Az.x +1)

to denote the increment function that maps x to z + 1. Functions can be applied to
arguments:

(Az.xz+1)3) =4
(M\z.2*)7) = 49
If we want to give a name to a function we have to do it explicitly
inc = (Az.x + 1)

(inch) =6

The A notation can be used to describe functions that take functions are arguments
and give functions are result. For example

funsq = (Af.(Az.(f(f2))))



represent a function funsq that on input any function f returns another function

(funsqf) : z — f(f(z)).

The ability to pass and return functions as values increases substantially the ex-
pressive power of a language. So far, the syntax of our functional language can be
described by the grammar (A-calculus):

S = x
| (A\z.S) Function abstraction
| (55)

(We also used numbers and arithmetic operations, but let’s forget about them for a
while).

Is this enough to write programs? It doesn’t seem so. in a programming language
we typically have many other things: constants (numerals, boolean), arithmetic oper-
ations, conditional expressions (if-then-else), loops. Even to describe functions, this
language seems quite limited: functions only take one argument!

Surprisingly, we don’t need all of this, and the ability to pass and return functions
as values is enough to get all other typical programming constructs. In this lecture
we will study how some of the above features can be emulated using higher order
functions. Of course, for efficiency and practicality reasons, real programming lan-
guages will include many of the above features, but showing that they are not strictly
necessary is an instructive excercise to understand the power of programming with
higher order functions.

(x € V a variable name)

Function application

2 Functions of several variables
Let’s start with something simple. Say we want to define a function of two arguments:
sum(z,y) = +y

(Assume for the moment that we have numbers and arithmetics.)
The addition function can be described using a technique called Currying (from
Haskell Curry), in which arguments are passed to the function one at a time. Define

sum = (Az.(Ay.x + y))

Notice that sum is a function of one variable that on input 3 returns a function
(A\y.3+ y) as the result. We can now apply (Ay.x +y) to 4 to get 3+ 4 =7, the sum
of a and b! Combining the two steps we have

((sum 3) 4) =7



In general, functions of n variables

frxy, oo xn = f(T1,...,2p)

can be represented by the A-term

S = (A1 (Az2. (. (AT f (21, -+, 7))

If we want to apply the function represented by S to arguments aq,...,a,, we can
write:

((((Say) as) ...) an) = f(a1,---,an)
As an example that does not use arithmetics, we can define the composition fuction
fg— fogas
comp = (Af.(Ag-(Az.(f (g 2)))))
Even if functions of several arguments can be represented as functions of only one

argument using the Currying technique, it is convenient to extend our notation to
allow for multivariate functions as follows:

Si=(Azy...2,.9)|(S St ... Sp)

3 Boolean constants and conditional expressions
The boolean values can be represented as A-terms as follows:
true = (\zy.x)

false = (Azy.y)

Using this representation, the conditional expression if S then S; else S can be
simply expressed as

(S S1 S2)

because
(true Sl Sg) = Sl

and
(false Sl SQ) = Sg

Using conditionals we can also easily define the usual boolean operations
not = (\z.(z false true))

and = (Az2125.(2; 2, false))
or = (Az122.(2; true z,)).

In the homeworks, you will be asked to define some other simple boolean function.



4 Pairs and tuples

In class we showed also how to represent pairs [z,y] = (Az.(z = y)) as functions that
return the first element of the pair on input true, and the second element on input
false. We also defined constructor and selectors:
pair = (A\zy.(Az.(z = y)))
first = (Az.(x true))
second = (\z.(x false)).

with the property that
(first (pair z y)) =«

and
(second (pair z y)) =y

Pairs can be used to build more complicate data structures, e.g. tuples can be
represented applying the pair constructor repeatedly

[x1, 22, ..., 2, = (pair z; (pair z, (pair z3 ... (pair z,_ 1 z,)))).

Using these techniques it is also possible to represent numerals, and arithmetic
operations on numerals.

5 Recursion

Next week we will study how to realize recursion using A-terms. The idea is the
following. Consider a recursive definition:

flx)=1if x=0then 1lelse x * f(x — 1)

defining the factorial function f(n) = n!. You can think of the right hand side of this
definition as a higher order function 7" that on input a function f, returns another
function

T(f)=Mx.(if x =0 then 1 else x x f(x —1)).
Notice that the factorial function f(n) = n! satisfies the equation
f=T(f)

i.e., if we replace the factorial function \z.z! instead of f in 7'(f), what we obtain is
again the factorial function

(Az.(if £ =0then 1 else z x (x — 1)!) = (Az.z!).



We say that (Az.z!) is a fiz-point of T.

We have seen that given a higher order function 7'(f) representing a recursive
definition for f, the solution to the equation f = T'(f) gives the desired recursive
function.

Let A = (Azy.y (x = y)) and define the “fix-point” operator

0 =AA= (Azyy (z 2 y))(Azy.y (z z y)).
Notice that

OT) = (AAT)

(Azy.(y (xzy))) AT)
(AAT))

© 1))

ie, (©T)is a fix-point for T. If T is the transformation

(
(
(T
(T

T =AM Ax.(if x =0 then 1 else x x f(x — 1))

then (© T) is the factorial function.



