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Problem Set 2 - Solutions

Instructor: Daniele Micciancio Oct. 23, 2000

Problem 1 (10 points)

a. The following expression can be used as the xor operator given the codi�cation
of true and false:

xor= �xy:(x (y false true) y)

b. � zero = (pair true true) = �z:(z �xy:x �xy:x)

� iszero = �n:(�rst n)

� inc = �n:(pair false n)

� dec = �n:(iszero n) n (second n)

c. De�ne

T = �f :�m:�n:(iszero m) n (f (dec m) (inc n))

Essentially this is the following recursive de�nitions for addition:

m+ n =

(
n if m = 0
dec(m) + inc(n) if 0 < m

The function we are looking for is obtained by applying the �x point operator to
the functionalT. Recall that the �xpoint operator� was de�ned as� = (B B)
with B = �xy:(y (x x y)). The function we are looking for is then (� T)

Problem 2 (10 points)

a. Function computing the approximate derivative of function f :

(define (deriv f d)

(lambda (x)

(/ ( - (f (+ x (/ d 2)))

(f (- x (/ d 2)))) d)

)

)



For computing the integral, observe that using the approximation formula and
�xing k we have: R
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We obtain the following program:

(define (int f a b k)

( if (= k 0 ) 0

( + ( * ( f ( + a ( / (- b a) (* 2 k)))) (/ (- b a) k))

(int f (/ (+ b ( * (- k 1) a)) k) b (- k 1)))))

To test the programs one can use the following:

(define(f x) (* x x))

(define (g x) ((deriv f 0.01) x))

(define (h x) (int f 0 x 1000))

(define y (- (int g 0 100 1000) (- (f 100) (f 0))))

(define x (- ((deriv h 0.01) 3) (f 3)))

Running the program gives us the values for x and y:

1 ]=> (load "dif.scm")

;Loading "dif.scm" -- done

;Value: x

1 ]=> x

;Value: 6.083342348972565e-6

1 ]=> y

;Value: -3.954482963308692e-9

Altough not exactly zero because of the approximations done in numerical com-
putation, the di�erence between the two values is very small in both cases.



b. Program for sums

(define (sums list)

(if (null? list) '()

(cons (car list)

(map (lambda (x) (+ x (car list)))

(sums (cdr list))))))

Program for smus

(define (smus list)

(cond ((null? list) '())

((null? (cdr list)) list)

(else (let ((s (smus (cdr list))))

(cons (+ (car list) (car s)) s)))))

If you run (sums (numbers 1000)) and (smus (numbers 1000)) you will notice
that while smus terminates in a fraction of a second, running sums takes several
seconds. A possible way to de�ne a faster function to compute sums is the
following:

(define (sums list) (reverse (smus (reverse list))))

Using this implementation, the running time of (sums (numbers 1000)) is much
smaller, just a little bit more than (smus (numbers 1000)).

A fast version of sums can also be de�ned directly, e.g., by the program:

(define (sums list)

(if (null? list) '()

(cons (car list)

(sums (cons (+ (car list) (cadr list))

(cddr list))))))

If you run this program you will notice that the running times of sums and smus
are roughly the same (a fraction of a second in both cases).



Problem 3 (10 points)

a. One can think of the di�erence between the static and dynamic scoping as
follows: in static scoping, the value of unbound variables in a function is given
by their values in the environment where the function is de�ned, whereas under
dynamic scoping, the value of the same variables is given by their value in the
environment where the function is called.

If executed under static scoping the program returns 3. The reason is that
after p2 is bound to (lambda (y) x), the returned value of p2, will be 1,
(which is the value of x in the environment where p2 is de�ned.) This can
be tested by simply running the program (remember that Scheme uses static
scoping).

Under dynamic scoping the value returned is 4, since now the value returned
by p2 is 2. (In the environment where p2 is called, x is 2.)

b. Under static scoping the program returns 5. When printing the value of x
when sub1 is called, x is bound to the variable x of the program main, which is
assigned value 5. If dynamic Under dynamic scoping rules, when sub2 is called,
the variable x will be bound to the x de�ned in the sub2 procedure, therefore
the value printed will be 10.

c. The idea to transfom a call-by-name program into an equivalent call-by-value
program is to use function abstractions to delay the evaluation of the parame-
ters. We �rst consider a simple example, and then describe the general trans-
formation. Consider the non-terminating program

1 ]=> (define A (lambda (x) (x x)))

;Value: A

1 ]=> (A A)

....

Even if we pass (A A) as an argument to a program that does not use it the
program will loop:

1 ]=> (define (one x) 1)

;Value: one

1 ]=> (one 1)

;Value: 1

1 ]=> (one (A A))

....



However, if we pass to \one" a function that evaluates to (A A), the execution
terminates:

1 ]=> (one (lambda () (A A)))

;Value: 1

[Notice: scheme allows the de�nition of functions with no arguments (lambda ()
(A A)).] The reason this time the program terminates is that for scheme (lambda
() (A A)) is just a function abstraction, and the function is not executed until
you apply it to a (possibly empty) list of parameters.

So, in order to get a call by name semantics we can substitute all actual pa-
rameters S in function calls by corresponding abstractions (lambda () S) and
all references to formal parameters x in function de�nitions with corresponding
functions invocations (x). Of course the translation function should be recur-
sively applied to all subexpressions.

The complete program is the following:

1 ]=> (define (Trans S)

(cond ((symbol? S) (list S))

((number? S) S)

((eq? (car S) 'lambda)

(list 'lambda (cadr S) (Trans (caddr S))))

(else

(cons (Trans (car S))

(map (lambda (x) (list 'lambda '() (Trans x)))

(cdr S))))))

; Value: trans

Now consider the program S1 and its translation from call-by-name to call-by-
value:

1 ]=> (define S1 '((lambda (x) 1)

((lambda (x) (x x)) (lambda (x) (x x)))))

;Value: s1

1 ]=> (define S2 (Trans S1))

;Value: s2

1 ]=> S2

;Value: ((lambda (x) 1)

(lambda () ((lambda (x) ((x) (lambda () (x))))

(lambda () (lambda (x)

((x) (lambda () (x))))))))



The argument passed to (lambda (x) 1) in S1 de�nes an in�nite computation.
Therefore, S1 does not terminate if executed call by value, however it terminates
in call by name because the formal parameter x is never used:

1 ]=> (eval S2 '())

;Value: 1

1 ]=> (eval S1 '())

...


