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Abstract

The path taken by a packet traveling across the Internet depends
on a large number of factors, including routing protocols and per-
network routing policies. The impact of these factors on the end-
to-end performance experienced by users is poorly understood. In
this paper, we conduct a measurement-based study comparing the
performance seen using the “default” path taken in the Internet with
the potential performance available using some alternate path. Our
study uses five distinct datasets containing measurements of “path
quality”, such as round-trip time, loss rate, and bandwidth, taken
between pairs of geographically diverse Internet hosts. We con-
struct the set of potential alternate paths by composing these mea-
surements to form new synthetic paths. We find that in 30-80% of
the cases, there is an alternate path with significantly superior qual-
ity. We argue that the overall result is robust and we explore two
hypotheses for explaining it.

1 Introduction

In this paper we set out to explore a simple question: How “good”
is Internet routing from a user's perspective, and why?

The impact of the Internet's routing protocols and policies on
end-to-end performance is poorly understood. At any time there are
many potential paths through the Internet connecting any two hosts.
Some of these paths have higher bandwidth than others, some have
lower propagation delay, and others see less congestion. These fac-
tors, which we call “path quality”, ultimately limit the end-to-end
performance achievable along any given path. As packets sent over
a path are delayed or lost this directly reduces the throughput that
a host can expect to obtain [MSM97].

Recent studies, such as Paxson's [Pax97a], have demonstrated
that there is great diversity in the end-to-end performance observed
on the Internet. However, it is currently unclear how much of this
diversity should be attributed to differences in load, differences in
capacity, or differences in the routing infrastructure. The focus of
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this paper is to explore this last possibility. Our goal is understand
the degree to which end-to-end performance is being determined
by the current state of Internet routing and to understand which
mechanisms are responsible.

There are both technical and economic reasons to expect that
Internet routing is non-optimal. Current wide-area routing proto-
cols are primarily concerned with the exchange of connectivity in-
formation and do not incorporate measures of round-trip time or
loss rate into their decisions. Per-network routing policies can be
used to address inter-network performance concerns, but the com-
bination of management complexity and the lack of economic moti-
vation typically limit these policies to coarse grained intra-network
load balancing [NAN]. Economic considerations can also limit
routing options – some parts of the Internet refuse to carry traffic
without a contractual agreement. However, it is unknown the extent
to which any or all of these factors impact end-to-end performance
as seen by the user.

To answer these questions we analyze five datasets containing
large numbers of Internet path measurements taken between geo-
graphically diverse hosts. For the path connecting each pair of
hosts, we collect several measures including round-trip time, loss
rate, and, in one dataset, bandwidth. Using this framework, we
compare each measured path to some potential alternates. These
alternate paths are derived synthetically by composing the mea-
surements from multiple connected paths. An optimal routing sys-
tem would always choose the best available path between any two
points on the Internet. The difference between the default and the
synthetic alternate paths therefore is a rough measure of the effi-
ciency of Internet routing. For 30 to 80 percent of the paths we
examined, we find that there are alternates with significantly im-
proved measures of quality.

Throughout this paper, we use the term “path” to refer to the
complete set of hops traversed between two hosts, and the term
“route” to refer to the data structures exchanged between routers to
describe connectivity. While “route” is frequently used to represent
both meanings, this can sometimes cause ambiguity. Similarly, we
use the term “path selection” to describe the combined set of route
selection decisions made at all the routers in a path.

In Section 2, we place our work in the context of related work
concerning Internet routing behavior and end-to-end performance.
In Section 3, we overview Internet routing protocols and policies.
Section 4 describes the datasets we employed, our experimental
and analytic methodologies, and some potential sources of error.
We present our comparisons of Internet path quality in Section 5
and 6. Finally, we evaluate two hypotheses for explaining these
results in Section 7, and we summarize our results in Section 8.



2 Related research

The relationship between path selection and end-to-end perfor-
mance on the Internet has not been the subject of much study.
While there is extensive analytic literature on routing protocols
that guarantee a particular “Quality of Service” (e.g., [AGT98]),
few papers address how path quality is affected by current Internet
routing algorithms. Conversely there are many papers that measure
the current Internet, but they do not consider how path quality is
affected by routing decisions. However, these later papers are the
inspiration for our work and are the most closely related.

The literature contains several studies that measure the behav-
ior of Internet routing. Most of these focus on routing dynamics,
that is, how routes change over time, and do not examine the is-
sue of route selection. Chinoy's study of the NSFNET uses rout-
ing protocol traces to explore the frequency of changes in network
connectivity [Chi93]. Using this data, Chinoy concludes that rout-
ing changes generally do not originate in the backbone, and that
a small number of edge networks account for a disproportionate
number of the total routing transitions. Labovitz et al. uses a sim-
ilar methodology to examine pathologies in the observed behavior
of the BGP routing protocol [LMJ97]. They find that the vast ma-
jority of routing updates are pathological and do not reflect real
topological changes. Also, they show that periods of routing in-
stability are correlated with periods of high traffic load and also
exhibit strong periodicity. More recently, the same authors con-
vincingly link some types of pathological routing behavior to the
use of particular routing software implementations [LMJ99]. They
further show that, discounting pathological behaviors, routing in-
stability is well distributed across networks in the Internet and
can not be easily attributed to a narrow class of networks. Pax-
son provides an end-to-end study of path dynamics by using the
traceroute tool to identify the particular hops traversed be-
tween pairs of hosts [Pax96]. He finds that Internet paths are gen-
erally dominated by a single route, but that some networks do ex-
perience significant route fluctuation. Moreover, his data indicates
that a large and increasing fraction of Internet paths follow different
routes from source to destination than from destination to source.

Another area in which there is significant literature is the black-
box study of Internet path characteristics. Bolot uses ICMP “echo”
packets to examine the distributions of packet loss and round-trip
times observed on a single trans-Atlantic path [Bol93]. A recent
study by Paxson examines the characteristics of a larger set of paths
using an automated analysis of TCP data transfers [Pax97a]. Pax-
son's results indicate that there is a wide variation in path character-
istics such as round-time time, packet loss, and bandwidth. How-
ever, he also finds that the amount of available bandwidth tends to
be stable for time periods up to several hours. Balakrishnan et al.
also find significant temporal stability in bandwidth measurements
collected from the IBM Olympic Web servers [BSSK97]. Further,
they show that hosts which share portions of a path tend to obtain
similar amounts of bandwidth.

There are a few papers that do touch explicitly on the interac-
tion between Internet routing and path quality. McQuillan et al. de-
scribe a performance sensitive routing algorithm used in the early
ARPANET [MRR80] and Khanna et al. [KZ88] discuss the behav-
ior of this algorithm under varying degrees of load. Varadhan et
al. present a simulation study of the effect of path changes on the
performance of transport protocols [VEF98]. They show that small
path changes during a TCP session can lead to significant reorder-
ing and a consequent reduction in performance. Finally, Francis
et al. explore the possibility of using end-to-end measurements to
construct maps of the minimum Internet propagation delay between
hosts [FJP+99]. Their methodology is to predict the minimum
propagation delay between a pair of hosts by triangulation using

a series of pair-wise measurements. Their methodology, developed
independently, is similar in principle to our approach of estimating
the quality of an Internet path using synthetic alternate paths. As
validation of our tool suite, we are able to independently generate
their graphs.

3 Routing overview

Theoretically, if the Internet used “shortest” path routing, where
paths are chosen to optimize some metric, there would be no room
to find alternate paths with better performance. In reality, however,
today's Internet routing policies and protocols are based on a num-
ber of factors that are only loosely correlated with performance.

The original ARPANET used a distributed adaptive routing al-
gorithm based on measurements of queuing delay at each link.
These measurements were propagated to all routers and packets
were forwarded along the paths calculated to have the lowest de-
lay [MRR80]. Early experience with this algorithm found that, un-
der heavy load, routing oscillations made the system inefficient.
Although more recent work has shown how to make performance-
adaptive routing stable [Bre95], at the time the Internet resorted to
a new metric of distance, “hop count,” to be used during periods
of high load [KZ88]. This metric correlates less well with perfor-
mance than explicit measurements, but it tends to be more stable.

As the ARPANET evolved into an Internet connecting the
networks of multiple agencies, the need for autonomous control
emerged. Different agencies had their own backbones and wished
to manage their internal routing differently from their connections
with the Internet. This led to a two-level routing hierarchy that per-
sists to this day. At the top-level, the Internet is partitioned into
a relatively small number of autonomous systems (AS's). Routers
within an AS route packets according to an interior gateway proto-
col (IGP); IGP's are used solely for selecting paths within an AS.
Each AS is free to use its own metrics for selecting these internal
routes. Although many small AS's (including the authors' home
AS) still use raw hop counts to select internal routes, most larger
AS's set internal metrics manually to distribute load and to avoid
using links with excessive propagation delay [Fre98, NAN, Cor98].

Once a packet leaves an AS its routing is managed by a sep-
arate exterior gateway protocol (EGP) spoken in common by all
other AS's. The first exterior gateway protocol was called EGP,
and used a “hop count”-like metric based on the number of AS's in
a path [Ros82]. The transition to a federation of regional networks
and commercial backbones created new demands for independent
control of routing policy. This resulted in the Border Gateway Pro-
tocol (BGP) used today [RL95].

Unlike the routing protocols described previously, BGP does
not necessarily select routes by minimizing some global metric
such as hop count or delay. Instead, the network administrators
at each AS define a “routing policy” that dictates how routes are
selected and advertised. This policy is implemented through a com-
plex weighting scheme that allows an administrator to favor certain
AS's to certain destinations, to encourage other AS's to favor cer-
tain exchange points, or to advertise a preference for being reached
through one provider or another. However, in the absence of ex-
plicit policy rules, most BGP routers will select the routes with the
shortest number of AS's in their advertisement.

Routing policies are driven by many concerns including, but
probably not limited to: providing good end-to-end performance,
addressing contractual obligations (e.g. “Acceptable Use Poli-
cies”), balancing load, minimizing cost, and incorporating local
concerns about the quality of the routes provided by different
providers. These policies not only control where a particular AS
forwards traffic, but also affect how other AS's view the global



topology. For instance, one AS may choose not to advertise cer-
tain routes, or may choose not to peer with another AS at all.
Even between AS's that do exchange routes, a packet may not
necessarily follow the “best” path. For example, a very common
policy for large network service providers (NSPs) is “early-exit”
routing [Fre98, Cor98]. In this scheme, traffic bound for another
provider is routed to the nearest possible exchange point between
them, whether or not this is the best path to the destination.

It should be clear that Internet routing is a complicated process
and does not naturally lead to a performance-optimal selection of
the path between two points. For a “good” path to be selected, the
administrators of every AS on that path must have the incentive
to maximize performance, must not have conflicting contractual or
operational obligations, must possess the knowledge about what the
best next hop is, must be able to express their knowledge in terms
of policy, and must not be hindered by any other AS.

4 Methodology and measurements

One way of measuring the efficiency of Internet routing is to ask
the question: “Is there an alternate path to our destination over
which we would obtain better performance?” Unfortunately, while
it is easy to directly measure the performance seen traversing the
default path between two hosts, it is difficult to obtain the same
metrics for alternate paths or even to discover what those alternate
paths might be. The Internet does not have an effective mechanism
that allows us to select the path taken by a packet; loose source
routing, although an Internet standard, is disabled by many AS's
because of security concerns. Nor does the Internet have a mecha-
nism to reveal its complete internal connectivity: traceroute, a
tool used in this study, only reveals internal links along the default
path between the traced hosts.

Instead, we have opted to compare default paths to alternate
paths we know must exist and for which we have reliable per-
formance information – alternate paths using host-to-host paths as
building blocks. We explain our methodology below, discuss some
potential sources of bias, and then describe the actual datasets we
have used to drive our analysis.

4.1 Methodology

The key observation behind our methodology is that different hosts
have a different “view” of the network; they use different providers
and have differing degrees of connectivity. Because end-to-end In-
ternet paths are determined by the conjunction of a number of local
routing policies, routing inefficiencies seen by one host are not nec-
essarily seen by others. This allows us to compare the quality of the
default path chosen by the Internet to a hypothetical path that routes
around any inefficiency by traversing through a sequence of hosts.

To explore the quality of alternate paths, we collected three
new large datasets of pair-wise host measurements taken over an
extended period of time. We also used two other existing large
datasets of pair-wise host measurements. We identify alternate
paths by constructing a weighted graph in which each host is rep-
resented by a vertex and each path is represented by a correspond-
ing edge. For all but one of the datasets, the weight of the edge
is set according to the long term time average of the measurements
(round-trip time, loss rate, or bandwidth) taken along that path over
the length of the dataset. In one dataset, UW4-A, we repeatedly
measure between all pairs of hosts at the same time, using these in-
dividual measurements as weights in the graph. In either case, for
each pair of hosts, A and B, we remove the edge connecting them
and perform a shortest-path computation between A and B using
the remaining edges. The result is the best alternate path between

A and B using other Internet paths as constituent “hops”. We repeat
this experiment independently for each metric.

There are a number of potential biases in this approach, includ-
ing both structural biases, those resulting from the choice of data,
and statistical biases, those resulting from our analysis of the data.

While our ability to identify routing inefficiencies improves as
the number of hosts increases, because we cannot measure potential
routes using information about the internal Internet topology, our
methodology will always yield a conservative estimate of the po-
tential inefficiency in Internet routing. As just one example, many
of our alternate paths traverse the same Internet links twice, on their
way into and out of intermediate hosts; this cost would not be in-
curred by a real-life routing algorithm.

Another concern is about the representativeness of our data
sources. In [Pax97b], Paxson presents an argument for the rep-
resentativeness of two of the datasets we have used. For the other
three datasets, we make no claim of representativeness; as with any
trace-driven study, our results apply only to the hosts we measured
at the times we measured them. Hosts in one dataset, UW1, were
selected because they appeared in lists of public traceroute
servers in North America; hosts in the other two datasets, UW3
and UW4, were selected because they were in North America and
found to be traceroute servers by the Altavista search engine.
All five datasets show qualitatively similar results, however, indi-
cating that our results are probably not anomalous.

Another source of bias is that for all but one of our datasets,
we do not measure all paths simultaneously, nor do we measure
all hops on a single synthetic path simultaneously. We rely instead
on long-term time averages of each metric of path quality (round-
trip time, loss rate and bandwidth) to represent each default path,
and combinations of these time averages to represent each synthetic
alternate path. Consequently, each metric is influenced by samples
taken at many different times of day and across many weeks. When
we compare or combine two such statistics we are implicitly assum-
ing that the measurements are all independent. This is clearly not
true, as it is well established that many different parts of the Inter-
net see higher load during weekday working hours and lower load
during other times [TMW97]. In a few cases, this assumption of
statistical independence is likely to yield a conservative estimate of
routing inefficiency; for example, we assume loss rates are uncor-
related on each hop of an alternate path – correlated losses would
only increase the relative benefit of the alternate path. In most other
cases, the impact of the assumption of independence is uncertain.

In Section 6 we explore the impact of temporal dependence at
multiple time scales. We first explore time-of-day variation and
present data demonstrating that superior alternate paths are more
prevalent during peak working hours. This leads us to surmise
that dependence at this coarse time scale does not invalidate our
results. There are also potential sources of dependence on shorter
time scales, such as unfair buffer management or media access pro-
tocols. To address these concerns we have collected one dataset,
UW4-A, in which all pairs are measured concurrently. We find
superior alternate paths are somewhat more likely to be found
when paths are measured simultaneously, although there is a large
amount of variation in the performance of individual alternate paths
at short time scales. This evidence suggests that at worst, the over-
all bias from our use of long-term averages is to underestimate the
degree of routing inefficiency in the Internet.

An additional potential source of statistical bias arises from our
use of the sample mean as a characteristic statistic. If the underly-
ing distribution is skewed then the sample mean may be strongly
affected. Despite this, we have chosen to use the mean because
of the simplicity of its additive property (“the sum of the means is
equal to the mean of the sums”) and the straightforward calculation
of confidence intervals. Even assuming independence, the median



Measurement Year Number of Number of Percent of
Dataset method collected Duration Location hosts measurements paths covered

D2-NA traceroute 1995 48 days North America 22 14896 95
D2 traceroute 1995 48 days World 33 35109 97
N2-NA tcpanaly 1995 44 days North America 20 7582 86
N2 tcpanaly 1995 44 days World 31 18274 88
UW1 traceroute 1998 34 days North America 36 54034 88
UW3 traceroute 1999 7 days North America 39 94420 87
UW4-A traceroute 1999 14 days North America 15 216928 100
UW4-B traceroute 1999 14 days North America 15 9169 100

Table 1: Characteristics of the datasets used in this paper. “Percent of paths covered” represents the number of distinct paths measured
divided by the number of potential paths that could have been measured (i.e., number of hosts * (number of hosts - 1)).

of the synthetic paths is substantially more expensive to compute
than the mean. To do so requires that we convolve the samples of
the edges being considered and extract the median of the result-
ing distribution. We have performed this analysis for a number of
the graphs presented in this paper (we present one such graph in
Section 6) and do not find any significant difference in the results.

4.2 Datasets

We conduct our analysis using several datasets whose basic char-
acteristics are described in Table 1. In the remainder of this section
we describe how the data was collected, concentrating on the new
UW1, UW3, and UW4 datasets.1 A more complete description of
D2 and N2 can be found in [Pax96, Pax97a, Pax97b]. Note that
D2 and N2 were collected three to four years earlier than the others
and reflect a very different routing infrastructure.

All datasets used a centralized control host to generate requests
to remote servers. In the UW datasets the remote servers were se-
lected from publicly available traceroute servers, while D2 and
N2 used a customized measurement daemon called npd. The con-
trol hosts issued requests to the servers at random intervals. In
UW1 each traceroute server was chosen from a per-server
uniform distribution with a mean of 15 minutes; the target of the
traceroute was then chosen randomly from the list of servers.
In UW3 and UW4-B, a random pair of hosts was selected for mea-
surement using an exponential distribution with a mean of 9 and
150 seconds, respectively. In UW4-A, every server sent requests
to every other server at the same time; these episodes were sched-
uled using an exponential distribution with a mean of 1000 seconds.
Note that the 15 hosts in UW4-A and UW4-B are the same, and
were selected at random from a pool of 35 hosts before the traces
were started.

For the UW datasets, we empirically determined which
hosts employed ICMP (i.e. traceroute reply) rate limit-
ing, and filtered them from the datasets. Without such filtering,
traceroute requests to rate limiting hosts would observe a
higher loss rate than warranted. For UW1 we only removed such
hosts from the pool of potential targets; instead, we use the round-
trip measurements from traceroutes initiated in the opposite
direction. For UW3 and UW4 we filtered all ICMP rate limiting
hosts, to allow us to perform paired measurements on each path.
For D2, identifying ICMP rate limiting hosts is no longer possible,
so to correct for this bias we used the heuristic that only the first
traceroute sample was counted against losses.2 With the ad-

1A previous dataset, UW2, was removed from this paper due to uncorrectable ex-
perimental errors.

2Each traceroute invocation takes three consecutive samples of the round trip
time to the end host; unless another traceroute was targeted to the same machine
at the same time, the first sample to a rate-limiting host will be accurate, while the

dition of this heuristic the distribution of loss rates in D2 became
consistent with the other datasets. For the N2 dataset we only an-
alyze the metric of bandwidth; since N2 measures round-trip time
and loss rate observed within a TCP session, its measurements of
those attributes are not unbiased samples. Finally, in D2 and in the
UW datasets we removed paths for which there were fewer than 30
measurements so as to increase our confidence in the results.

These datasets have some potential biases and unique charac-
teristics. First, in all datasets the control host was occasionally
unable to contact the server it selected and this prevented a mea-
surement from being made. In UW1, UW3, and UW4, measure-
ments also failed if a request was not returned within 5 minutes.
The consequence of this dependence between the control host and
servers is to somewhat under-represent events correlated with host
and server connectivity. In the context of our study, this causes
us to overestimate the quality of intermittently or poorly connected
paths. Second, the UW1 dataset was generated according to a uni-
form distribution and does not have the same theoretical protection
against “anticipation” possessed by the datasets generated from the
exponential distribution [Pax96]. This could potentially result in a
reduction in the representativeness of the events in our data, but we
can think of no anticipatory mechanism that would have a strong
effect in this regard.

5 Results

Using the methodology described earlier, we evaluated the quality
of alternate paths for the metrics of round-trip time, loss rate and
bandwidth. Each graph presented in this section is a cumulative dis-
tribution function (CDF) across all pairs of hosts of the difference
between the mean value for the metric in question and the mean
value derived for the best alternate path for that metric; the alter-
nate paths are selected according to a different metric in each graph.
Values below zero (or below one for the relative graphs in Figures 2
and 5) are those for which the best alternate path was worse than
the default path, while values above zero/one are those for which
the best alternate path was superior. The distance from zero/one
represents the magnitude of the difference. We have trimmed our
graphs to eliminate visual scaling artifacts resulting from very long
tails, so consequently some of our CDF's do not reach 100%. Uni-
formly, across all datasets and all metrics, we find that we are able
to find good alternate paths between a significant fraction of the
host pairs.

Figure 1 demonstrates this effect for the metric of round-trip
time for the datasets of UW1, UW3, D2 and D2-NA. For 30 to 55
percent of the paths measured, there is an alternate path through

second and third samples are more likely to be dropped because they follow the first
sample.
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Figure 1: CDF of the difference between the mean round-trip time
recorded on each path, and the best mean round-trip time derived
for an alternate path.
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Figure 2: CDF of the ratio between the mean round-trip time
recorded on each path, and the best mean round-trip time derived
for an alternate path.

one or more additional hosts resulting in a smaller round-trip time.
For a smaller fraction, there was a significant improvement of 20
ms or more. Finally, when we take the ratio of the round-trip times
for the default and best alternate path, shown in Figure 2, we find
that for roughly 10 percent of the paths, the best alternate has 50
percent better latency. The imbalance between the D2 and D2-NA
datasets in Figure 1 is due to the longer latencies for trans-oceanic
transit; in Figure 2, the imbalance largely disappears.

A similar effect is demonstrated in Figure 3 for the metric of
loss rate. Loss rates on synthetic alternate paths are formed by
assuming that losses on the constituent ”hops” are uncorrelated;
an assumption of correlated losses would result in lower combined
losses along alternate paths. Across all four datasets, we find that
75 to 85 percent of the paths have alternates with a lower loss rate.
Again, the fraction of alternate paths that demonstrate substantial
improvements in drop rate (5 percent or more) is smaller; only 5 to
50 percent of the paths fall in this category in the first three datasets.
The vertical line at 0 percent represents pairs with no measured
losses on either the default or alternate paths. Note that we did not
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Figure 3: CDF of the difference between the mean loss rate
recorded on each path, and the best mean loss rate derived for an
alternate path.

collect enough samples to discriminate among low loss rates; we
discuss confidence intervals for this graph in Section 6. For this
same reason, normalizing the difference in the drop rate is unin-
teresting, as large numbers of alternate paths show enormous, or
even infinite, relative improvements. As with round-trip time, most
of the datasets track together, with D2 demonstrating substantially
more improvement from alternate paths.

While the previous graphs suggest that there are alternate paths
with better performance characteristics, they do not indicate the
amount of available bandwidth on these paths. Although TCP per-
formance is inversely related to background latency and drop rate,
it is difficult to determine what the TCP throughput along an al-
ternate path would have been from these measurements, because
TCP exerts and reacts to load. Instead, we use the N2 datasets
to attempt to answer this question, since they reflect the loss and
round-trip times seen during actual TCP transfers. We construct
alternate path bandwidth measurements by combining the round-
trip times and loss rates observed along each default path in the N2
datasets. We compute the resulting TCP bandwidth according to
the TCP model of Mathis et al. [MSM97]. We combine round-trip
times via addition. However it is less clear how to compose loss
rates, since we do not know how much of the observed loss was
caused by the activity of the sending host and how much was due
to background traffic. Therefore, we present the results using two
different methods of combining loss rates. The first, which we la-
bel “optimistic”, uses the maximum loss rate of any component of
a synthetic path. This reflects the scenario that the sending TCP
is completely responsible for the observed loss, and therefore the
highest loss reflects the smallest bottleneck. The second, which we
label “pessimistic”, assumes that the loss rates on each component
are independent and combines them according to the probability
that a packet is lost on each underlying component of the synthetic
path. This reflects a mode in which all of the measured packet
losses are independent of the load exerted by the sending TCP. To
be computationally tractable, we only consider alternate paths of
length one hop for both the optimistic and pessimistic bandwidth
metrics.

Using these procedures we compute the CDF of the difference
between the bandwidth of the best alternate path and the actual
measured bandwidth of the default path. Of course, since we do
not have information about the capacity or load present on the links
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recorded on each path, and the best mean bandwidth derived for
a one-hop alternate path. The lines labeled “optimistic” reflect al-
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is independent.
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Figure 5: CDF of the ratio between the mean bandwidth recorded
on each path, and the best mean bandwidth derived for a one-hop
alternate path. The lines labeled “optimistic” and “pessimistic” re-
flect the same two cases as in Figure 4

of each path we cannot conclude that any difference would be sig-
nificant for more than a single flow. The results in Figure 4 demon-
strate that choosing alternate paths with respect to bandwidth shows
the same pattern seen earlier; 70 to 80 percent of the paths have al-
ternates with improved bandwidth. The optimistic and pessimistic
curves provide a relatively tight bound for both datasets. Figure 5
shows the ratio of the computed alternate path bandwidth and the
measured default path bandwidth. From this figure we can see that
for at least 10% to 20% of the paths the potential bandwidth im-
provement is at least a factor of three. The difference between N2
and N2-NA in Figure 4 is due to the larger bandwidths available in
North America; in Figure 5 the difference between the two datasets
largely disappears.
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Figure 6: CDF of the difference between the mean round-trip
recorded on each path, and the best mean round-trip time derived
for any one-hop alternate path and the identical CDF using medians
instead of means. This graph is for the D2-NA dataset.

6 Robustness

As discussed in Section 4, there are a number of biases in our
methodology that might skew our results. In this section we eval-
uate the robustness our basic finding with respect to four of these
factors: the use of the mean instead of the median, random vari-
ation among measurement samples, time-of-day dependence, and
long-term averaging of path samples.

6.1 Use of the mean versus the median

The first issue we consider is the use of the mean instead of the me-
dian as our characteristic statistic. As discussed earlier, the mean
may be affected if the underlying distribution is highly skewed. As
a result, the median is usually considered a superior statistic. How-
ever, for our purposes, it is computationally expensive to compose
distributions to yield median performance for synthetic alternate
paths. We combine medians by convolving the distributions of the
round-trip times in each path, and using the median of the resulting
distribution. In Figure 6 we illustrate the difference between us-
ing the mean and the median when determining the alternate path
improvement for round-trip time for one of the datasets. To keep
the computational costs reasonable we limit the length of alternate
paths for both means and medians to one hop. It is clear that for
this metric on this dataset, the difference is negligible. We have
sampled other datasets and metrics, and they all showed similar
results.

6.2 Variation in the datasets

The second issue we consider is that of variation. All of our mea-
surements demonstrate large ranges and consequently, it is possi-
ble that the difference between the means can be attributed largely
to random variation in the data. Some of the potential sources of
variation include upgrades to the network infrastructure during the
traces, path changes (for instance due to routing policy changes or
due to route flaps as in [LMJ97]), and congestion.

Following the procedure outlined in [Jai91], we compute the
confidence interval for a single path as: �a ��b � t[:975;v]s, where
�a and �b represent the sample means for the path, t[:975;v] is the
(1� �=2)-quantile of the t variate with v degrees of freedom, and
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Figure 7: CDF of the difference between the mean round-trip time
recorded on each path, and the best mean round-trip time derived
for an alternate path. The 95% confidence interval is plotted as
error bars for every eighth point on the y-axis. This graph is for the
UW3 dataset.
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Figure 8: CDF of the difference between the mean loss rate
recorded on each path, and the best mean loss rate derived for an
alternate path. The 95% confidence interval is plotted as error bars
for every eighth point on the y-axis. This graph is for the UW3
dataset.

s is the standard deviation of the mean difference. Note that this is
computed independently for each point on the CDF.

In Figure 7 we plot the resulting 95% confidence intervals for
the mean difference in round-trip time for the UW3 dataset; for
readability, we include the intervals for every eighth path along the
y-axis. In Figure 8 we do the same for loss rate. For round-trip time
we see that although some paths have high variability, most paths
have relatively tight error bounds. The same graph for loss rate
shows larger variability; this is to be expected because each sample
measurement of loss rate has a binary value, and consequently the
standard deviation is quite large.

The confidence intervals show the same pattern across other
datasets. In Tables 2 and 3 we show, for each dataset, the percent
of the paths for which the best alternate path is better, worse, or
indeterminate compared to the default path at a 95% confidence in-

Alternate is UW1 UW3 D2-NA D2
Better 28% 30% 20% 32%
Indeterminate 41% 41% 32% 37%
Worse 31% 29% 48% 31%

Table 2: Percentage of paths for which the difference in the mean
round-trip time between the best alternate path and the default path
is greater than zero, less than zero, or crosses zero at the 95% con-
fidence level.

Alternate is UW1 UW3 D2-NA D2
Better 33% 46% 21% 41%
Indeterminate 42% 36% 57% 41%
Zero 21% 18% 19% 11%
Worse 4% 0% 3% 7%

Table 3: Percentage of paths for which the difference in the mean
loss rate between the best alternate path and the default path is
greater than zero, less than zero, is zero, or crosses zero at the 95%
confidence level.

terval for round-trip time and loss rate. This is typically described
as a t-test [Jai91]. Roughly speaking, the percentage of paths for
which a better alternate path can be found at the 95% confidence
level represents those paths whose improvement cannot be well ex-
plained simply by variation. This is a conservative measure of the
effect of variation, because random variation could equally have
been responsible for “hiding” alternate paths that were in fact bet-
ter. While there is significant random variation, variation is not
sufficient to explain the the difference between alternate and de-
fault paths.

6.3 Time of day effects

Another concern is that we have averaged our data across large pe-
riods of time, and the quality of a path could vary significantly over
the measurement period. For example, the Internet as a whole is
likely to be more congested during peak working hours and less
congested at night or on weekends. To investigate this concern,
we have divided our data into weekday and weekend, and further
divided weekday data into six hour time periods. In Figures 9
and 10, we show how this breakdown impacts the difference in
the mean round-trip time and loss rate. For legibility we have only
graphed data for the UW3 dataset, but the effects are similar for
other datasets. Note that Figure 10 is not directly comparable to
Figure 3 because dividing the dataset reduces the number of sam-
ples per path; this reduces our ability to discriminate the difference
between default and alternate paths at low loss rates. This granu-
larity effect is represented in the graph by the horizontal line that
joins each curve to the vertical axis at 0% loss rate; it also reduces
the tail where the default path outperforms the best alternate path.

The first thing we notice is that the overall effect occurs regard-
less of the time of day. It is also evident that time of day does
impact the the magnitude of the difference. It is interesting to note
that alternate paths seem to do better during times known to have
heavier load. For both metrics, the greatest benefit is seen between
the hours of 6am and 12pm PST, while the least benefit is seen dur-
ing the weekend and between 12am and 6am PST. We hypothesize
that during hours of low load there is little congestion or routing
instability and there is less variance between paths. During periods
of high load, we expect that routing instability and congestion are
likely offering more “opportunities” for optimization.
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Figure 9: CDF of the difference between the mean round-trip time
recorded on each path, and the best mean round-trip time derived
for an alternate path, broken down by time of day and weekend.
This graph is for the UW3 dataset.
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Figure 10: CDF of the difference between the mean loss rate
recorded on each path, and the best mean loss rate derived for an al-
ternate path, broken down by time of day and weekend. This graph
is for the UW3 dataset.

6.4 Long-term averaging of data

For all of the data presented previously, the performance charac-
teristics of each path were measured repeatedly over a relatively
long timescale, and averaged together before any comparisons were
made to potential alternate paths. In order to gauge the effect of this
averaging, we took a new dataset, called UW4-A, for which we
measured all paths concurrently. Out of a pool of 35 of the hosts
used in UW3, we randomly selected 15 to use for this measure-
ment. UW4-A consists of a series of randomly spaced “episodes,”
and each episode consists of a single traceroute measurement
in each direction between each pair of the 15 hosts. Of course,
each traceroute request takes a non-negligible amount of time
to execute, because it measures the round-trip time to each interme-
diate router before reaching the target host. Therefore our measure-
ments are “simultaneous” only within a several minute window. In
analyzing UW4-A, we compute the best alternate path using only
measurements taken from the same episode; we then calculate the
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Figure 11: CDF of the difference between the mean round-trip time
recorded on each path, and the best mean round-trip time derived
for any alternate path (labeled “UW4-B”), plus the equivalent CDF
using the mean difference for each pair of hosts between the default
path and best alternate path when measurements are made “simul-
taneously” on all paths (labeled “pair-averaged UW4-A”), plus the
equivalent CDF using the raw individual differences between the
default path and the best alternate path (labeled “unaveraged UW4-
A”).

difference between the measurement of the default path and the
best alternate path within the episode. To serve as a basis of com-
parison, during the period we collected UW4-A, we also made an
independent set of long-term time average measurements between
the same set of 15 hosts; we call this dataset UW4-B.

Figure 11 plots the resulting comparison between the simulta-
neous measurements in UW4-A and the time-averaged measure-
ments in UW4-B. We plot the simultaneous measurements in two
separate ways. One curve, labeled “pair-averaged,” chooses the
best alternate path for each pair of hosts for each episode, and
averages the resulting difference across all measurements for the
same pair. This is the curve that is most comparable to the time-
averaged mean from UW4-B, in that each data point in the graph
represents the average performance seen by a single pair of hosts.
The result shows that we are slightly more likely to be able to find
good alternate paths on a fine-grained timescale than on a long-term
timescale.

We should note, however, that there is a huge amount of vari-
ability in the performance of the best alternate paths in UW4-A.
For a given pair of hosts, not only are different alternate paths be-
ing selected as best in each episode, the difference between the best
alternate path and the default path is highly variable. Many of the
pairs of hosts have large swings from episode to episode, where the
best alternate path is sometimes much worse and sometimes much
better than the default path. To capture this variability, we also
plotted in Figure 11 the CDF of all the individual measurements
of the differences between the best alternate path and the default
path. This curve, labeled “unaveraged”, plots a data point on the
CDF for every pair of hosts for every episode. The graph shows
a much broader tail in both directions when the points are plotted
individually.
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Figure 12: CDF of the difference between the mean round-trip time
recorded on each path and the best mean round-trip time derived for
an alternate path, and the equivalent CDF computed for the dataset
after having removed the “top ten” hosts. This graph is for the UW3
dataset.

7 Evaluation

In this section we evaluate two hypotheses for explaining the pres-
ence of superior alternate paths. The first hypothesis is that su-
perior alternate paths are caused by avoiding parts of the Internet
with particularly poor quality (e.g. congested exchange points) or
by exploiting connectivity to parts of the Internet with exception-
ally good quality (e.g. vBNS). The second hypothesis is that, more
specifically, superior alternate paths result primarily from avoiding
congestion, rather than by minimizing propagation delay. We dis-
cuss each of these theories below.

7.1 Host and AS popularity in alternate paths

To evaluate the degree to which the prevalence of superior alternate
paths is a result of the behavior of a small part of the Internet or a
more widespread phenomenon, we conducted several experiments
that attempt to quantify the effect that an individual host or a single
autonomous system (AS) can have on our results.

Our first experiment evaluates the effect of removing individual
hosts from a dataset in terms of the shape of the alternate path CDF
curve. If it were the case that only a handful of nodes were some-
how causing the existence of most of the superior alternate paths,
then we should be able to remove those hosts and see a dramatic
shift of the CDF curve for the remainder of the dataset.

Figure 12 shows the effect of removing the ten hosts which have
the greatest impact on the CDF curve. We use a simple greedy al-
gorithm to select the hosts; at each step we remove the host whose
removal shifts the CDF the farthest to the left. The curve labeled
“all UW3 hosts”, previously reported in Figure 1, shows the distri-
bution of the absolute improvement in round-trip time between the
best alternate path and the default path for the entire UW3 dataset,
while the curve labeled “without 'top ten'” shows the distribution
after removing the top ten hosts. From the figure, we see that the
top ten hosts are not the source of a disproportionate number of the
superior alternate paths, and we conclude that the prevalence of al-
ternate paths with superior round-trip times cannot be attributed to
a small number of hosts.

We next measure the number of times each host appears as an
intermediate host in some superior alternate path (not necessarily
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Figure 13: CDF of the number of better alternate paths in which
a host appears as an intermediate node, weighted by the degree to
which the alternate path is better
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Figure 14: Scatterplot of AS's found in the UW1 dataset. The x-
axis represents the number of default paths in which that AS ap-
pears, while the y-axis is the number of best alternate paths (for the
metric of round-trip time) in which it appears.

the very best alternate), weighted by the degree to which the alter-
nate path was better than the corresponding default path. Figure 13
shows the CDF of this “normalized improvement contribution” for
each host in the UW3 dataset. We can see that the distribution lacks
the heavy tail that would indicate the existence of a few hosts with
abnormally large contributions, so again we cannot attribute the ex-
istence of superior alternate paths to a small number of hosts.

Finally, we consider the effect of autonomous systems in the
center of the network, rather than individual end hosts in our
datasets. For each AS that appeared in any trace in the dataset, we
compute the number of default paths in which that AS appears and
the number of best alternate paths in which it appears. Figure 14
shows a scatter plot relating these two quantities for the metric of
round-trip time for the UW1 dataset; each point represents a single
AS in the dataset. Since the graph does not show a significant num-
ber of AS's which are substantially more represented in either the
original paths or the alternates, we conclude that the availability of
alternate paths is not being unduly inflated by a small number of
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Figure 15: CDF of the difference between the propagation delay
recorded for each path, and the best propagation delay derived for
an alternate path, superimposed with the equivalent CDF for the
mean round-trip time. This graph is for the UW3 dataset.

either good or poor AS's.

7.2 Congestion vs propagation delay

In the preceding sections, we used mean round-trip time as our
measure for network latency, with the goal of capturing the end-
user performance of different paths. In this section we will consider
the relationship between the two components of mean round-trip
latency: propagation delay and queuing delay. Propagation delay
includes all fixed costs along the path, primarily physical transmis-
sion latency, minimal store and forwarding delay, and processing
overhead; queuing delay corresponds to the congestion-dependent
costs. Although we cannot directly measure propagation delay, we
can estimate it from our data by taking the tenth-percentile of the
measured round-trip times. We chose to take the tenth percentile
rather than the actual minimum observation to protect against noise
in the case where the minimum resulted from a different route than
the majority of the measurements.

If congestion is a major source of routing inefficiency and if
avoiding congested links is a major reason for the existence of su-
perior alternate paths, then two hypotheses should hold. We should
find less inefficiency with respect to propagation delay than we saw
with respect to mean latency, and we should find that most of the
gains for alternate paths for mean latency to be due to reduced
queuing delay rather than reduced propagation delay.

Figures 15 and 16 show that while both of these hypotheses
are true to a limited degree, there is still a substantial degree of
inefficiency in propagation delays and a substantial tendency for
paths with superior mean round-trip latencies to also have superior
underlying propagation delays. Figure 15 plots the CDF of the dif-
ference between the best alternate path and the default path using
the metric of propagation delay, for the UW3 dataset. This figure
was generated using the same methodology described in Section 4,
but substituting propagation delay as the metric by which alternate
paths are chosen and judged. A CDF for the same dataset with
respect to mean round-trip latency is included from Figure 1 for
comparison. From Figure 15 we can see that, although the magni-
tude of the differences is cut substantially when only propagation
delay is considered, superior alternate paths still exist for 50% of
the paths, and the differences are still significant for a considerable
number of paths.
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Figure 16: Scatterplot of the portion of the difference in mean
round-trip time between the best alternate path and the default path
due to the difference in physical propagation delay. Each point rep-
resents one pair of hosts. This graph is for the UW3 dataset.

Figure 16 looks at the relative contributions of propagation and
queuing delay for the default and best alternate paths, again for the
UW3 dataset. For this figure, the alternate paths were selected with
respect to the mean round-trip time. The difference in the round-
trip time between the best alternate path and the default path was
then separated into the portion due to the propagation delay versus
the queuing delay. Each point in the scatter plot corresponds to a
single path; the x axis measures the difference in mean round-trip
latency between the default and best alternate paths, and the y axis
measures just the difference in propagation delay. Points to the
right of the y axis are paths where a superior alternate path exists,
while for those on the left the default path is superior.

If it were the case that superior paths are superior entirely be-
cause they avoid congestion, then we would expect to see the points
clustered around the x axis, with no positive correlation between
total latency and propagation delay. Conversely, if congestion was
equal along all paths and all of the improvements were due to prop-
agation delay, we would see all the points clustered around the line
y = x. What we see in the data is a mixing of these properties,
with the points where the default path is superior falling primarily
between the x axis and the line y = x, and the points where the
alternate path is superior tending a little more towards the x axis.
These effects vary somewhat between the different datasets.

The points are separated into six qualitative groups by the two
axes and the line y = x. Each group is largely symmetric with
its reflection about the origin, with the primary difference being
whether it is the default or the alternate path that is superior. Points
in groups 1 and 4 are what might be considered “typical” points,
where the better path is superior both in queuing delay and prop-
agation delay. In groups 2 and 5, the difference in propagation
delay is greater in magnitude than the difference in mean latency,
which indicates that the queuing delay is actually worse along the
superior path, while in groups 3 and 6 the difference in propaga-
tion delay is opposite the difference in mean latency, indicating the
the superior path has greater propagation delay, and therefore much
smaller queuing delay. As might be expected, there are very few
paths in group 3, indicating that most superior default paths have
better propagation delay, while group 6 is much more populated,
indicating that many superior alternate paths are in fact going out
of their way to avoid congestion.



The conclusion from this data is that congestion and propaga-
tion delay both play significant roles in the observed inefficiencies;
neither one can properly be said to be the single dominant factor.

8 Conclusion

In this paper, we have presented a methodology for finding and
measuring the potential performance of alternate paths through the
Internet. We have shown that for a large number of paths in the In-
ternet there are alternate paths that exhibit superior quality as mea-
sured by round-trip, loss rate, and bandwidth. We have argued that
this finding is a robust one, largely independent of the precise set
of hosts measured, and applying to datasets taken across a several
year period, at different times of the day, whether instantaneous or
long-term time average performance is examined, and whether the
minimum delay or the mean round-trip time is considered.
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