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UNIFORM DIRECT PRODUCT THEOREMS: SIMPLIFIED,
OPTIMIZED, AND DERANDOMIZED∗
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Abstract. The classical direct product theorem for circuits says that if a Boolean function
f : {0, 1}n → {0, 1} is somewhat hard to compute on average by small circuits, then the correspond-
ing k-wise direct product function fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) (where each xi ∈ {0, 1}n) is
significantly harder to compute on average by slightly smaller circuits. We prove a fully uniform
version of the direct product theorem with information-theoretically optimal parameters, up to con-
stant factors. Namely, we show that for given k and ε, there is an efficient randomized algorithm
A with the following property. Given a circuit C that computes fk on at least ε fraction of inputs,
the algorithm A outputs with probability at least 3/4 a list of O(1/ε) circuits such that at least one
of the circuits on the list computes f on more than 1 − δ fraction of inputs, for δ = O((log 1/ε)/k);
moreover, each output circuit is an AC0 circuit (of size poly(n, k, log 1/δ, 1/ε)), with oracle access
to the circuit C. Using the Goldreich–Levin decoding algorithm [O. Goldreich and L. A. Levin,
A hard-core predicate for all one-way functions, in Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, Seattle, 1989, pp. 25–32], we also get a fully uniform version
of Yao’s XOR lemma [A. C. Yao, Theory and applications of trapdoor functions, in Proceedings of
the Twenty-Third Annual IEEE Symposium on Foundations of Computer Science, Chicago, 1982,
pp. 80–91] with optimal parameters, up to constant factors. Our results simplify and improve those
in [R. Impagliazzo, R. Jaiswal, and V. Kabanets, Approximately list-decoding direct product codes
and uniform hardness amplification, in Proceedings of the Forty-Seventh Annual IEEE Symposium
on Foundations of Computer Science, Berkeley, CA, 2006, pp. 187–196]. Our main result may be
viewed as an efficient approximate, local, list-decoding algorithm for direct product codes (encoding
a function by its values on all k-tuples) with optimal parameters. We generalize it to a family of
“derandomized” direct product codes, which we call intersection codes, where the encoding provides
values of the function only on a subfamily of k-tuples. The quality of the decoding algorithm is then
determined by sampling properties of the sets in this family and their intersections. As a direct con-
sequence of this generalization we obtain the first derandomized direct product result in the uniform
setting, allowing hardness amplification with only constant (as opposed to a factor of k) increase in
the input length. Finally, this general setting naturally allows the decoding of concatenated codes,
which further yields nearly optimal derandomized amplification.
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1. Introduction. Applications of complexity theory such as cryptography and
derandomization require reliably hard problems that cannot be solved by any algo-
rithm with a nontrivial advantage over random guessing. Direct product theorems are
a primary tool in hardness amplification, allowing one to convert problems that are
somewhat hard into problems that are more reliably hard. In a direct product theo-
rem, we start with a function f such that any feasible algorithm has a nonnegligible
chance of failing to compute f(x) given a random x. We then show that no feasible al-
gorithm can, given multiple instances of the problem x1, . . . , xk, compute all of the val-
ues f(xi), with even a small probability of success. (Usually, the xi’s are chosen inde-
pendently, but there are also derandomized direct product theorems where the xi’s are
chosen pseudorandomly.) Many strong direct product theorems are known for nonuni-
form models, such as Boolean circuits [Yao82, Lev87, GNW95, Imp95, IW97, STV01].
Unfortunately, in general, direct product theorems fail in completely uniform models
such as probabilistic computation.

For further discussion, it will be more convenient to view direct product theorems
in the language of error-correcting codes. Impagliazzo [Imp02] and Trevisan [Tre05]
pointed out that proofs of direct product theorems correspond to (approximate) local
error-correction of sparse codes. Using this view, we think of a function f as being
encoded by Code(f) = fk, its values on all k-tuples. That is, the message is the truth
table of the function f , and the encoding of f is the truth table of the direct product
function fk.1 Given a highly corrupted encoding C′ of some function f , we would
like to recover f . We want local decoding in the sense that the decoding algorithm,
given oracle access to C′, should produce an efficient circuit for f (which may also
use oracle access to C′). Having efficient local decoding of the direct product code
immediately translates into the hardness amplification properties of the direct product
construction. Intuitively, if the decoder can recover a small circuit computing f well
on average (thereby contradicting the assumed average-case hardness of f) from a
small circuit C′ that has only ε agreement with fk, then fk must be hard to compute
by small circuits on all but less than ε fraction of inputs.

A completely uniform decoding algorithm for the direct product encoding Code(f)
is an algorithm that constructs a single circuit C computing f well on average, when
given as input some circuit C′ that agrees with fk on a small, say ε, fraction of all
k-tuples. When ε is sufficiently close to 1, e.g., if ε � 0.9, then such uniform decoding
is possible (and easy to analyze). However, if ε � 1/2, it is easy to see that C′ does
not uniquely determine f . Indeed, consider t = 1/ε different (e.g., randomly chosen)
functions f1, . . . , ft. Partition the set of all k-tuples into t sets (of measure ε each).
Define C′ so that C′ agrees with fk

i on the k-tuples in the ith set of the partition.
Then this C′ has agreement ε with each of the t = 1/ε functions f1, . . . , ft.

The example given above shows that the direct product code Code(f) = fk is
not uniquely decodable when the fraction of corrupted symbols in the codeword is
at least 1/2. In order to tolerate high corruption rates (which is the interesting case
for hardness amplification), we need to allow list-decoding: Given C′, a corrupted
version of fk, a decoding algorithm may output a list of circuits such that one of
them computes f well on average. The list size is an important parameter that we
would like to minimize. The example above shows the list size lower bound 1/ε (for
list-decoding from C′ that has ε agreement with the function fk, which we wish to
decode).

1Note that if f is a Boolean function, then the message is a string over the binary alphabet {0, 1},
whereas its encoding is a string over the larger alphabet {0, 1}k .
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The list size may also be viewed as corresponding to a certain amount of nonuni-
form advice used by the decoding algorithm. More precisely, if the list-decoding
algorithm outputs a list of t circuits, we can use log t bits of advice to indicate which
of the circuits computes the right function f (by specifying the index of that circuit
on the list). Conversely, a decoding algorithm that uses a bits of nonuniform advice
can be viewed as a list-decoding algorithm producing a list of size 2a (one circuit per
advice string).

Most previously known proofs of the direct product theorem are highly nonuni-
form in the sense that they yield decoding algorithms with the list size exponential
in 1/ε. In contrast, more uniform proofs of the direct product theorem should yield
list-decoding algorithms with the list size at most polynomial in 1/ε. Impagliazzo,
Jaiswal, and Kabanets [IJK06] gave the first such proof of the direct product theo-
rem achieving the list size poly(1/ε); however, the proof was quite complex and fell
short of the information-theoretic bounds in many respects. We elaborate more on
the uniform versus nonuniform direct product theorems in section 1.4.

In this paper, we give a new uniform direct product theorem that has the following
features:

• Optimality. The parameters achieved by our list-decoding algorithm are
information-theoretically optimal (to within constant factors). In particu-
lar, the list size is O(1/ε), which matches the list size lower bound given in
the example above (up to a constant factor).2

• Efficiency. The decoding algorithm is simply a projection, namely, imple-
mentable in uniform NC0 with oracle access to the corrupted circuit C′. The
circuits it produces are implementable in uniform AC0. Thus, our hardness
amplification applies to much simpler uniform classes than P.

• Simplicity. Both the decoding algorithm and the proof of correctness are ex-
tremely simple (even when compared with proofs in the nonuniform setting!).

• Generality. The decoding algorithm and its proof turn out to work without
change for a general family of codes of which the above direct product code
is just an example. We define this class of intersection codes, which is simply
specified by the family of k-subsets used to record values of f in Code(f).
We explain how the quality of the decoding (and thus of the amplification)
depend on the sampling properties of the family of sets, and of their pairwise
intersections.

• Derandomization. As an immediate bonus of the above setting we get the
first derandomized direct product theorems in the uniform setting. A direct
application of the above intersection codes to subspaces yields amplification
with input size O(n), instead of the trivial bound of O(kn) when using all
subsets. In a more sophisticated application, using a concatenation of two
intersection codes, we get similar savings in randomness, but with hardly any
loss in other parameters.

• Consequences. As observed by [TV02, Tre05], efficient list-decoding has the
same consequences as unique decoding in terms of hardness amplification
within many natural complexity classes, e.g., NP,PNP‖,#P,PSPACE, and
EXP. Impagliazzo, Jaiswal, and Kabanets [IJK06] used their (suboptimal)
direct product decoding algorithm for hardness amplification in this uniform

2To the best of our knowledge, it was not known prior to this work whether O(1/ε) is the correct
upper bound on the list size, even just information-theoretically. Here we prove this upper bound
constructively, by providing an efficient list-decoding algorithm.
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setting. The improved parameters of the direct product decoding obtained in
the present paper immediately yield improved hardness amplification results
using the approach of [IJK06].

1.1. Statement of the uniform direct product theorem. Let us describe
now the hardness amplification results in computational complexity terms. For this
we need the following terminology. We say that a circuit C ε-computes a function F
if C(z) = F (z) for at least ε fraction of inputs z. A function F is (1− ε)-hard for size
t(n) if no circuit of size t(n) ε-computes F .

Following [TV02], we define the “semiuniform” class BPP// log as the class of
probabilistic algorithms with advice of length O(log n) that depends on the random
coin tosses of the algorithm, but not on the input. We can view such an algorithm
as probabilistically producing a polynomial-sized list of polynomial-size circuits: the
algorithm then is judged by how well the best circuit on its list does. A probabilistic
polynomial-time algorithm with advice, A(x, r, z), ε-computes F if, for every length n,
there is a function z(r) taking a polynomial-size string r to a logarithmic length out-
put, so that Prx,r[A(x, r, z(r)) = F (x)] ≥ ε. A function F is (1−ε)-hard for BPP// log
if no such algorithm and function z(r) exist. For superpolynomial time complexity
t = t(n), we can generalize in the obvious way to the class BPTIME(poly(t))//O(log t).

Given a Boolean function f : {0, 1}n → {0, 1}, the k-wise direct product function
fk is mapping every k-set (x1, . . . , xk) of n-bit strings (ordered according to some
fixed ordering of the universe {0, 1}n) to the k-tuple (f(x1), . . . , f(xk)).

3

One of our main results is the following.

Theorem 1.1 (uniform direct product theorem). There is an absolute constant
c > 0 so that for any functions δ = δ(n), k = k(n), t = t(n), and ε = ε(n) such that
ε ≥ e−δk/c and ε > t−1/c, if f is δ-hard for BPTIME(t)// log t , then fk is (1− ε)-hard
for BPTIME(t1/c)//(1/c) log t.

The proof can be obtained via the following reconstruction algorithm, which is
information-theoretically optimal up to constant factors.

Theorem 1.2 (approximate list-decoding algorithm). There is a constant c and
a probabilistic algorithm A with the following property. Let k ∈ N, and let 0 < ε, δ < 1
be such that ε > e−δk/c. Let C′ be a circuit that ε-computes the direct product fk for
some Boolean function f : {0, 1}n → {0, 1}. Given such a circuit C′, algorithm A
outputs with probability Ω(ε) a circuit C that (1 − δ)-computes f . The algorithm A
is a uniform randomized NC0 algorithm (with one C′-oracle gate), and the produced
circuit C is an AC0 circuit of size poly(n, k, log 1/δ, 1/ε) (with O((log 1/δ)/ε) of C′-
oracle gates).

Remark 1.3 (optimality of the parameters). If a function f is computable on
at most 1 − δ fraction of inputs by some circuit, then using k (independent) copies
of that circuit we can compute fk on (1 − δ)k ≈ e−δk fraction of input k-tuples.
Theorem 1.2 shows that this is the best possible, up to a constant factor c in the
exponent of e−δk. That is, the relationship among k, δ, and ε is tight, up to constant
factors. Also, running the algorithm A of Theorem 1.2 O(1/ε) times, one gets a list
of O(1/ε) circuits that with constant probability (say, at least 3/4) contains a good
circuit for f . Up to a constant factor, this matches the simple list size lower bound for
list-decoding from agreement ε described earlier. Finally, it is also possible to show

3This is slightly different from the usual definition of k-wise direct product, where one allows as
inputs to fk all k-tuples (x1, . . . , xk) rather than k-sets; the case of k-tuples can be easily deduced
from the case of k-sets.



UNIFORM DIRECT PRODUCT THEOREMS 1641

that Ω((log 1/δ)/ε) oracle queries to C′ are necessary for successful decoding, and so
our decoding algorithm is optimal (up to a constant factor) also in this parameter.

In our proof, the circuit output by algorithm A will have the following structure.
Fix s = k/2. Let A = (a1, . . . , as) be an (ordered) s-subset of {0, 1}n, and let
v = (v1, . . . , vs) be an s-bit string. For intuition, imagine that vi = f(ai) for all
1 � i � s.

We define the following randomized circuit CA,v (see Algorithm 1).

Algorithm 1 Circuit CA,v.

On input x ∈ {0, 1}n, check whether x = ai for some ai ∈ A; if so, then output vi.
Otherwise, repeatedly sample random k-sets B such that A ∪ {x} ⊆ B, discarding
any B where C′ is inconsistent with our answers v for A (i.e., where C′(B)|A �= v).
For the first consistent B, output C′(B)|x. Produce some default (error) output if no
consistent B is found even after 100 · (ln 1/δ)/ε iterations.

The algorithm CA,v makes sense when vi = f(ai) for all 1 � i � s. This alone
would not be sufficient to ensure that CA,v is a good circuit for f . We will need a
stronger property of the set A (that for many sets B, where C′(B) is consistent with
the values v for A, the values C′(B) are mostly correct), which will still be ensured
with reasonable probability for a random choice of (A, v) as described above.

Here is the complete description of our decoding algorithm A (see Algorithm 2).

Algorithm 2 Algorithm A.

Pick at random a k-set B0 and an s-subset A ⊆ B0. Set v = C′(B0)|A. Output the
circuit CA,v.

1.2. Generalized direct product encoding: Intersection codes. Our proof
technique will allow us to analyze a certain generalized direct product code, which we
define below. Let f : U → R, where U is some universe. Usually, U will be {0, 1}n, or
F
m
q , an m-dimensional vector space over a finite field Fq. The range R is an arbitrary

set (R = {0, 1} for Boolean f). We assume some fixed ordering of the elements of U ,
and identify a size-s subset of U with the s-tuple of ordered elements.

Definition 1.4 (intersection codes). For a parameter k ∈ N, we specify a
generalized k-wise direct product encoding of f by two families of subsets of U . Let T
be a family of k-subsets of U , and let S be a family of s-subsets of U (with s < k); the
family S is used only in the decoding algorithm and its analysis. The intersection code
Code = Code(T ,S) is defined by Code(f) : T → Rk, giving for every k-set B ∈ T
the values f(b) for all b ∈ B.

The length of the message in Code is |U |, and the length of the encoding is |T |.
We would like to maximize the rate |U |/|T |.

Our two running examples of such families (T ,S) are the following:

• Independent. T are all k-subsets of U , and S are all s-subsets of U . Here we
fix s = k/2.

• Subspaces. We identify U with the vector space F
m
q . For positive integers

d � 8 and r = d/2, we take T to be all d-dimensional affine subspaces of U ,
and S to be all r-dimensional affine subspaces of U . Here we have k = qd and
s = qr =

√
k.
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The Independent example is the k-wise direct product function considered earlier.
The rate of this code is very bad, as it maps |U |-size messages to approximately |U |k-
size codewords.

The Subspaces example gives a code with much better rate, and it will give us
a derandomized version of the direct product theorem. The inputs of fk will be all
points in a given affine d-dimensional subspace of U . Note that to specify k = qd such
points, we need only specify the d+1 vectors of U that define the d-dimensional affine
subspace (d basis vectors plus a shift vector). In our case, d and r will be constants,
and so these affine subspaces are specified with only O(n) bits, where |U | = qm = 2n.
That is, the Subspaces code maps |U |-size messages to |U |O(1)-size codewords.

Next we define approximately list-decodable codes, which naturally generalize list-
decodable codes. In the case of list-decodable codes, one is interested in the upper
bound on the list size one needs in order to capture all messages whose encodings have
some nontrivial agreement with a given corrupted codeword (with the list size being
a function of the agreement). In the approximate list-decoding setting, the strings on
the list do not have to be exactly equal to the messages, but rather “almost equal.”
If we think of the messages as (the truth tables of) some functions fi’s, then it is
sufficient for the list to consist of functions gi’s so that, for each message f (whose
encoding has nontrivial correlation with the given corrupted codeword C′), there is
some gj on the list such that f and gj agree almost everywhere. For efficient local
list-decoding, we require an efficient algorithm that produces small circuits for these
functions gi’s on the list (given oracle access to the corrupted codeword C′). The
decoding is local in the sense that we can compute the function gi on any given input,
as opposed to the usual decoding where we would simply output the entire truth table
of gi.

More formally, we have the following definition.
Definition 1.5 (approximately list-decodable codes). The code Code is δ-

approximately (ε, �)-list decodable if for every function C′ : T → Rk there is a
collection of at most � functions g1, g2, . . . , g� such that, for every function f : U → R,
if Code(f) ε-agrees with C′, then f will (1 − δ)-agree with some gi for 1 � i � �.

The code Code is efficiently locally decodable if there is an efficient algorithm
that uses oracle access to C′ to generate circuits for the functions gi (which also use
that oracle).

Our decoding algorithm for Code(S, T ) is exactly the same as the algorithm A
described in the previous section, with sets A coming from S, and sets B from T . We
show that this algorithm A produces a good circuit for f , provided that families S, T
satisfy certain sampling conditions. In particular, we prove the following.

Theorem 1.6. Both Independent and Subspaces codes are efficiently, locally,
δ-approximately (ε, O(1/ε))-list decodable, where

• Independent: δ = O((log 1/ε)/k);
• Subspaces: δ = O(1/(ε2k1/4)).

Moreover, the decoder for the Independent code is a uniform randomized NC0 algo-
rithm that outputs AC0 circuits.4

We use very little about the set systems S and T . The following is an informal
summary of the properties we need.
Computational assumptions. It is possible to efficiently sample from the following

distributions: B uniformly chosen in T ; given B ∈ T , uniformly pick A ∈ S

4This yields a much simpler construction of nonbinary codes, locally list-decodable in uniform
randomized AC0, than the one given by [GGH+07].
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with A ⊂ B; given A ∈ S and x ∈ U \ A, uniformly pick B ∈ T with
A ∪ {x} ⊂ B.

Symmetry. For a fixed B ∈ T , for a random A ∈ S with A ⊂ B, the elements of A
are individually uniform over B. For a fixed A ∈ S, and for random B ∈ T
with A ⊂ B, the elements in B \A are individually uniform over U \A.

Sampling. For a fixed B ∈ T and any sufficiently large subset W ⊂ B, with high
probability over a random A ∈ S, A ⊂ B, |A ∩W |/|A| is approximately the
same as |W |/|B|. For a fixed A ∈ S, and for any sufficiently large subset
H ⊂ U \A, with high probability over a random B ∈ T , A ⊂ B, we have that
|(B \A) ∩H |/|B \A| is approximately the same as |H |/|U \A|.

1.3. Concatenated codes and hardness condensing. We also prove a
stronger version of Theorem 1.6 for the case where we allow an oracle circuit C ′

for the direct product fk to be only approximately correct on at least ε fraction of
inputs to fk. More precisely, we allow a circuit C′ such that, for at least ε fraction of
T ∈ T , C′(T ) and fk(T ) agree on at least (1−δ′) fraction of elements of T . Note that
the usual version of direct product decoding assumes δ′ = 0. Given such a circuit C′,
we show how to obtain a circuit C which (1− δ)-computes f , for δ = O(δ′).

This relaxed notion of approximate list-decoding can be formalized as follows, gen-
eralizing our earlier definition of approximately list-decodable codes (Definition 1.5).

Definition 1.7. The code Code is (δ, δ′)-approximately (ε, �)–list-decodable if
for every function C′ : T → Rk there is a collection of at most � functions g1, g2, . . . , g�
such that, for every function f : U → R, if the k-tuples fk(T ) and C′(T ) (1 − δ′)-
agree on at least ε fraction of sets T ∈ T , then f will (1 − δ)-agree with some gi, for
1 � i � �. Efficient local decodability means, as before, that a collection of circuits
for such gi’s can be efficiently generated, given oracle access to a circuit C′.

We prove the following “approximate” version of Theorem 1.6.

Theorem 1.8. Both Independent and Subspaces codes are efficiently, locally,
(δ,Ω(δ))-approximately (ε, O(1/ε))–list-decodable, where

• Independent: δ = O((log 1/ε)/k);
• Subspaces: δ = O(1/(ε2k1/4)).

While interesting in its own right, Theorem 1.8 will also allow us to obtain a
strong derandomized version of the uniform direct product theorem for a Boolean
function f : {0, 1}n → {0, 1}. The k-wise direct product encoding based on affine
subspaces already yields a harder function on inputs of size O(n). However, Theo-
rem 1.6 (for Subspaces) says that to obtain a function with hardness 1 − ε from a
function with constant hardness δ, one needs to take k = poly(1/ε), which is too big
when ε is exponentially small in n. For nonuniform derandomized hardness amplifi-
cation, [IW97, STV01] show how to take an n-variate Boolean function of constant
hardness, and construct a new O(n)-variate Boolean function of hardness 1− 2−Ω(n).
By analogy with this result, we would like to obtain a derandomized direct product
encoding h of f such that h has hardness 1 − ε for ε = e−Ω(n), while the input size
of h is O(n) and the output size k = O(log 1/ε). That is, we would like to have the
exponential relationship between k and ε (as in the Independent case), and, at the
same time, have the k-tuples that are describable with only O(n) bits so that the new
function has input size O(n) (as in the Subspaces case). Such a derandomized direct
product construction would have the best possible relationship among the parameters
k, ε, and the input size.

We will be able to meet this goal partially: we define a function h of hardness
1 − ε for ε = e−Ω(

√
n) with input size O(n) and k = O(log 1/ε). The function h
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is a concatenation of two encodings: first we encode a given Boolean function f :
{0, 1}n → {0, 1} with the Subspaces K-wise direct product code, obtaining a function
g : T → {0, 1}K, where K = O(1/(εδ)8) and T is the collection of all d-dimensional
affine subspaces of Fm

q ; here we identify {0, 1}n with F
m
q . Then we encode each output

g(B), for B ∈ T , with the Independent k-wise direct product code, for the universe
{0, 1}K and k = O((log 1/ε)/δ). Theorem 1.8 is needed to handle possible errors
created in the decoding of the inner code.

Theorem 1.9 (uniform derandomized direct product theorem). There is an
absolute constant c > 0 so that for any constant 0 < δ < 1, and any functions t = t(n),
k = k(n), ε = ε(n) ≥ max{e−δk/c, e−Ω(

√
n), t−1/c}, and K = K(n) = O(1/(εδ)8), if

f : {0, 1}n → {0, 1} is δ-hard for BPTIME(t)// log t, then the function h defined from
f as described above is (1 − ε)-hard for BPTIME(t1/c)//(1/c) log t. The input size of
h is O(n).

We give an interpretation of Theorem 1.9 in terms of “hardness condensing” in
the spirit of [BOS06]. We obtain some form of “hardness condensing” with respect
to BPTIME(t)// log t. For an affine subspace B ∈ T , think of g(B) = f |B as the
truth table of the Boolean function mapping b ∈ B to f(b). Since B is an affine
d-dimensional subspace, each element of B can be described by a d-tuple of field
elements (α1, . . . , αd) ∈ F

d
q , and so each f |B : Fd

q → {0, 1} is a Boolean function on
d log q-size inputs. Also, each B ∈ T can be described with (d + 1)m log q bits, and
so each function in the function family {f |B}B∈T has a short description.

Consider the following problem: Given (a description of) B ∈ T , construct a
circuit that computes f |B well on average. We show the following.

Theorem 1.10 (hardness condensing). For an absolute constant c > 0, if a
function f is δ-hard for BPTIME(t)// log t, then every probabilistic t1/c-time algorithm
C has probability at most ε = max{q−d/16, t−1/c} (over random B ∈ T and the internal
randomness of C) of producing a circuit that (1− Ω(δ))-computes f |B.

Intuitively, for almost every B, the function f |B has almost the same hardness as
f , but is defined on inputs of smaller size. Thus the reduction from f to fB can be
thought of as “hardness condensing.”

Finally, we also consider a truncated version of the Hadamard code, and argue that
it is approximately, efficiently, locally, list-decodable, with information-theoretically
optimal parameters up to constant factors. For a Boolean function f : {0, 1}n → {0, 1}
and a parameter k ∈ N, the k-XOR encoding of f is defined as the function f⊕k

mapping each k-subset of n-bit strings (x1, . . . , xk) to the value ⊕k
i=1f(xi). This

binary encoding of f is essentially the encoding used in Yao’s XOR lemma [Yao82]
(hence our motivation for defining the k-XOR code above), with the only difference
that we consider k-sets rather than k-tuples of n-bit strings.

We have the following theorem.

Theorem 1.11. The k-XOR code is efficiently, locally, δ-approximately (1/2 +
ε, O(1/ε2))–list-decodable, for δ = O((log 1/ε)/k).

As one might expect, the proof of Theorem 1.11 goes by analyzing the concatena-
tion of the direct product code and a certain variant of the Hadamard code. However,
to achieve the information-theoretically optimal list size O(1/ε2) (see, e.g., [IJK06]
for an argument concerning why this bound is optimal), one needs to be careful in
the decoding analysis of such a concatenated code. Our proof of Theorem 1.11 ends
up relying on the efficient (δ,Ω(δ))-approximate list-decoder of Theorem 1.8 for the
Independent codes.
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1.4. Relation to previous work.

1.4.1. Nonuniform direct product theorem. The classical direct product
theorem (and closely related Yao’s XOR lemma [Yao82]) for circuits has many proofs
[Lev87, Imp95, GNW95, IW97]. The basic idea behind all these proofs is the following:
If a given circuit C′ ε-computes fk(x1, . . . , xk) for some δ-hard function f : {0, 1}n →
{0, 1}, with ε > (1−δ)k, then it must be the case that the correctness of the answers of
C′ at some position i is correlated with the correctness of its answers in the remaining
positions (since otherwise it would be the same as trying to compute f(x1), . . . , f(xk)
independently sequentially, which obviously cannot be done with probability greater
than (1− δ)k).

This correlation of C′’s answers can be exploited in various ways to get a circuit
(1−δ)-computing f from the circuit C′ (yielding different proofs of the direct product
theorem in [Lev87, Imp95, GNW95, IW97]). Usually, one takes a random k-tuple
(x1, . . . , xk) containing a given input x in some position i, runs C′ on that tuple,
and checks how well C′ did in positions other than i. To perform such a check, one
obviously needs to know the true values of f at the inputs xj for j �= i; these are
provided in the form of nonuniform advice in the circuit model. Then one decides on
the guess for the value f(x) based on the quality of C′’s answers for xj , j �= i. For
example, in [IW97], one flips a random coin with probability that is some function of
the number of incorrect answers given by C′ outside position i.

1.4.2. Uniform direct product theorem, and decoding vs. testing. To
get a uniform algorithm for f , we need to remove (or at least minimize the amount
of) the nonuniform advice f(xj), j �= i. The first result of that type was obtained
in [IJK06]. Their idea was to use the circuit C′ itself in order to get enough labeled
examples (x, f(x)), and then run the direct product decoding algorithm of [IW97] on
C′ and the obtained examples.

To get sufficiently many examples, [IJK06] use a method they called direct product
amplification, which is to take an algorithm solving the k-wise direct product to one
that (approximately) solves the k′-wise direct product problem with k′ 
 k. This
amplification is essentially equivalent to approximate list-decoding when there are only
k′ possible instances in the domain of the function f . Their list-decoding algorithm
used one random “advice set” (where the algorithm produced correct answers) as
a consistency check for another set that contains the instance to be solved. To be
a meaningful consistency check, the advice set and instance-containing set need to
have a large intersection. For independent random sets, this implies, by the birthday-
paradox bounds, that k′ � k2. Because of this constraint, [IJK06] had to use direct
product amplification iteratively, to cover the whole domain size of 2n instances. These
iterations complicated the construction and made the parameters far from optimal.

We instead pick the instance-containing set conditioned on having a large inter-
section with the advice set. This can be done at one shot, on any domain size, so no
iterations are needed.

This idea is similar in spirit to the direct product testing methods used by [GS00,
DR06], and we were inspired by these papers. However, while those authors showed
that this is sufficient in the unique decoding regime (where the circuit is computing
the direct product with high probability), we were surprised that this one idea suf-
ficed in the list-decoding case as well. Our derandomized subspace construction was
also inspired by [RS97, AS03], who list-decode functions correlated to multivariable
polynomials by using consistency checks on small dimensional subspaces.
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While our results were inspired by similar results on direct product testing, we
have not found any formal connection between the testing and decoding problems. In
particular, passing the consistency test with nonnegligible probability is not sufficient
for testing nonnegligible correlation with a direct product function. Despite the lack of
any formal connection, some ideas of the present paper have been used in the follow-
up work by Impagliazzo, Kabanets, and Wigderson [IKW09] to get direct product
testing results, which were then applied to constructing new PCPs.

Remainder of the paper. Section 2 contains some background facts and basic
sampling properties of graphs used in the decoding of intersection codes. The analysis
of our algorithm A is given in section 3, where we state the conditions on the pair
(S, T ) that are sufficient for A to produce a good circuit CA,v. Section 4 contains the
proofs of Theorems 1.8, 1.9, and 1.10. Theorem 1.11 is proved in sction 5. Section 6
contains concluding remarks and open questions.

2. Preliminaries.

2.1. Concentration bounds. The standard form of the Hoeffding bound [Hoe63]
says that, for any finite subset F of measure α in some universe U , a random subset R
of size t is very likely to contain close to αt points from F . The following is a natural
generalization for the case where F is any [0, 1]-valued function over U .

Lemma 2.1 (see Hoeffding [Hoe63]). Let F : U → [0, 1] be any function over a
finite universe U with the expectation Expx∈U [F (x)] = α, for any 0 � α � 1. Let
R ⊆ U be a random subset of size t. Define a random variable X =

∑
x∈R F (x). Then

the expectation of X is μ = αt, and for any 0 < γ � 1, Pr [|X − μ| � γμ] � 2·e−γ2μ/3.
Lemma 2.2. Let X1, . . . , Xt be random variables taking values in the interval

[0, 1], with expectations μi, 1 � i � t. Let X =
∑t

i=1 Xi, and let μ =
∑t

i=1 μi be the
expectation of X. For any 0 < γ � 1, we have the following:

• Chernoff–Hoeffding: If X1, . . . , Xt are independent, then Pr[|X−μ| � γμ] �
2 · e−γ2μ/3.

• Chebyshev: If X1, . . . , Xt are pairwise independent, then Pr[|X −μ| � γμ] �
1/(γ2μ).

2.2. Pairwise independence of subspaces. Here we will argue that points in
a random affine (or linear) subspace of U = F

m
q (for a finite field Fq) are, essentially,

pairwise independent and uniform over U .
Let M be a collection d vectors a1, . . . , ad ∈ U , where ai’s are picked indepen-

dently uniformly at random from U . Let b ∈ U also be picked uniformly at random
from U . We will think of M as a matrix with column-vectors a1, . . . , ad, and of b as a
column-vector. Let S = F

d
q be the set of all d-dimensional vectors over Fq; we think

of elements in S as column-vectors.
It is easy to argue the following.
Lemma 2.3. For random M and b as above, the random variables Ms + b, for

s ∈ S, are pairwise independent and uniform over U .
Proof. The proof is a straightforward generalization (to m dimensions) of the

standard fact that, for random field elements a, b ∈ Fq, the variables ai + b, for
i ∈ Fq, are pairwise independent and uniform over Fq. The uniformity is obvious. For
pairwise independence, consider any i, i′ ∈ Fq, with i �= i′, and any c, c′ ∈ Fq, and
observe that the system of linear equations ai+b = c and ai′+b = c′ (in the variables
a and b) has a unique solution over Fq.

Let S′ be any fixed subset of nonzero vectors of Fd
q such that every two s, s′ ∈ S

are linearly independent; it is easy to show that one can choose t = (qd − 1)/(q − 1)
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such pairwise independent vectors.
We have the following lemma.
Lemma 2.4. For a random M as above, the random variables Ms, for s ∈ S′,

are pairwise independent and uniform over U .
Proof. The proof follows by generalizing the simple fact that, for random a, b ∈ Fq,

the variables ai+ bj, for all nonzero pairwise linearly independent vectors (i, j) ∈ F
2
q,

are pairwise independent and uniform over Fq. The uniformity is obvious. The
pairwise independence follows since, for any two linearly independent (i, j) and (i′, j′)
in F

2
q, and any c, c′ ∈ Fq, the system of linear equations ai+ bj = c and ai′ + bj′ = c′

has a unique solution in a, b.
We will view the vectors in M as the basis of a random linear subspace. The

probability that M has rank less than d is at most O(qd/qm), which will be negli-
gible for our choice of parameters. Thus, with probability very close to 1, we have
that a random M has full rank. So, essentially, the random variables of Lemma 2.3
correspond to all points in a randomly chosen d-dimensional affine subspace, whereas
the random variables of Lemma 2.4 correspond to a subset of points in a random
d-dimensional linear subspace.

Let E = E(M) be the event that the random matrix M has full rank. We have
the following.

Claim 2.5. For any random event X,

Pr[X ]− negl � Pr[X | E ] � (1 + negl) ·Pr[X ],

where the probabilities are over the random choice of M and b, and negl = O(qd/qm).
Proof. The proof follows by the definition of conditional probability and the

bound on the probability of E .
We will interpret this claim as basically saying that a sequence of all qd elements

of a randomly chosen d-dimensional affine subspace of U are pairwise independent and
uniform over U , and that the sequence of elements of a randomly chosen d-dimensional
linear subspace (corresponding to points s ∈ S′) are also pairwise independent and
uniform over U .

2.3. Graphs. We will consider bipartite graphs G = G(L,R) defined on a bi-
partition L ∪ R of vertices; we think of L as left vertices and R as right vertices of
the graph G. For a vertex v of G, we denote by NG(v) the set of its neighbors in G;
if the graph G is clear from the context, we will drop the subscript and simply write
N(v). We say that G is biregular if the degrees of vertices in L are the same, and if
the degrees of vertices in R are the same.

2.3.1. Auxiliary graphs for (S, T )-codes. The following three graphs will
be useful for the analysis of our intersection codes. Let U be any finite set. Let T be
a family of k-subsets of U , and let S be a family of s-subsets of U , for some s < k.

Definition 2.6 (inclusion graph). The inclusion graph I(S, T ) is the bipartite
graph that has an edge (A,B) for every A ∈ S and B ∈ T such that A ⊆ B.

The inclusion graph I(S, T ) is called transitive if, for every B,B′ ∈ T , there is
a permutation π of U which moves B to B′ and induces an isomorphism of I, and
similarly, for every A,A′ ∈ S, there is a permutation σ of U which moves A to A′ and
induces an isomorphism of I.

Definition 2.7 (S-graph). For every B ∈ T , the S-graph H(B,NI(B)) is the
bipartite graph that has an edge (x,A) for every x ∈ B and A ∈ NI(B) such that
x ∈ A.
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Definition 2.8 (T -graph). For every A ∈ S, the T -graph G(U \ A,NI(A)) is
the bipartite graph that has an edge (x,B) for every x ∈ U \ A and B ∈ NI(A) such
that x ∈ B \A.

Note that if I(S, T ) is transitive, then the structure of the S-graph H(B,N(B))
is independent of the choice of B, and similarly, the structure of the T -graph G(U \
A,N(A)) is independent of the choice of A. This will simplify the analysis of the
properties of these graphs. One can easily check that the inclusion graph I for both
of our running examples of families (S, T )—Independent and Subspaces—is transitive.

2.3.2. Samplers.
Definition 2.9 (λ(·)-sampler). Let G = G(L,R) be any biregular bipartite graph.

For a function λ : [0, 1] → [0, 1], we say that G is a λ(·)-sampler if for every 0 � μ � 1

and every function F : L → [0, 1] with the average value μ
def
= Expx∈L[F (x)], there

are at most λ(μ) · |R| vertices r ∈ R, where∣∣∣Expy∈N(r)[F (y)]− μ
∣∣∣ � μ/2.

Note that the case of a Boolean function F : L → {0, 1} with the average μ
corresponds to the property that all but λ(μ) fraction of nodes r ∈ R have close to the
expected number of neighbors in the set {x | F (x) = 1} of measure μ. The sampler
defined above is a natural generalization to the case of [0, 1]-valued F ; it is also a
special case of an oblivious approximator [BGG93] or approximating disperser [Zuc97].

In Definition 2.9 above, the sampling property must hold for every value μ, where
the fraction of “bad” vertices decreases as a function λ(μ). While the graphs we
consider in this paper are shown to be samplers according to this general definition,
a weaker sampling property is sufficient for most of our arguments. This weaker
property is formalized in the following definition.

Definition 2.10 ((β, λ)-sampler). For a biregular bipartite graph G = G(L,R)
and parameters 0 � β, λ � 1, we call G a (β, λ)-sampler if, for every value μ,

where β � μ � 1 and every function F : L → [0, 1] with the average value μ
def
=

Expx∈L[F (x)], there are at most λ · |R| vertices r ∈ R, where∣∣∣Expy∈N(r)[F (y)]− μ
∣∣∣ � μ/2.

Note that the difference from Definition 2.9 of a λ(·)-sampler is that a (β, λ)-
sampler needs to work only for functions F with an average μ � β and the fraction
of “bad” vertices (where there is a significant deviation from the expectation μ) is at
most some fixed value λ which is independent of μ. Obviously, if G is a λ(·)-sampler
(according to Definition 2.9), where the function λ(·) is monotone nonincreasing,
then, for every 0 � β � 1 and λ = λ(β), G is also a (β, λ)-sampler (according to
Definition 2.10).

For the analysis of intersection codes Code(S, T ) based on families S and T , we
will need the corresponding S-graphs and T -graphs to be samplers. We show that
this is true for both of our running examples. Since both our inclusion graphs (for
Independent and Subspaces cases) are transitive, the structure of the S-graphs and
T -graphs is independent of the choices of B ∈ T and A ∈ S, respectively.

Lemma 2.11. For both Independent and Subspaces families (S, T ), the S-graph
H is a λ(·)-sampler, where

• Independent: λ(β) = 2 · e−βk/24;
• Subspaces: λ(β) = 4/(β

√
k).
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Proof. For Independent, we use the Hoeffding bound of Lemma 2.1. For Sub-
spaces, we use the fact that points in a random affine subspace of a given affine space
are uniformly distributed and pairwise independent (cf. Claim 2.5), and then we apply
Chebyshev’s bound of Lemma 2.2.

Lemma 2.12. For both Independent and Subspaces families (S, T ), the T -graph
G is a λ(·)-sampler, where

• Independent: λ(β) = 2 · e−βk/24;
• Subspaces: λ(β) = 4q2/(β

√
k).

Proof. For Independent, we use the Hoeffding bound of Lemma 2.1.

For Subspaces, we use pairwise independence and the Chebyshev bound. Fix an
affine subspace A of dimension r. Suppose A is V + v, for some r-dimensional linear
subspace V of U = F

m
q and a vector v ∈ U . Let V † be any (m− r)-dimensional linear

subspace of U that is complementary to V in the sense that V and V † are linearly
independent (and so U = V + V †); such a subspace is not unique, but any choice of
V † will do for our purposes. To choose a random d = 2r-dimensional affine subspace
B containing A, we choose a random r-dimensional subspace W of V †, and we define
our affine 2r-dimensional subspace B = A+W . It is easy to see that (no matter which
subspace V † we use) the resulting distribution over subspaces B is uniform over all
2r-dimensional affine subspaces containing A.

Note that all of U \ A can be represented as the disjoint union of cosets A + u,
over all distinct nonzero vectors u in the complementary subspace V †. A function
F : (U \ A) → [0, 1] with the expectation β yields [0, 1]-valued functions Fu, where
Fu is the restriction of F to the coset A+ u for every nonzero vector u ∈ V †. Let βu

denote the average value of Fu over the points in A+ u. Clearly, the average of βu’s
is exactly β.

If we pick t nonzero vectors u1, . . . , ut ∈ V † independently at random, we would
obtain by the Chernoff–Hoeffding bound that the average (1/t)

∑t
i=1 βui is very likely

to be close to β. Similarly, if these t vectors were chosen pairwise independently,
we could argue the concentration around the expectation β by Chebyshev’s bound.
The intuition is that vectors in a random r-dimensional subspace W are essentially
pairwise independent, and hence we can argue that our random affine subspace B is
likely to be a good sample for estimating the average of F .

More precisely, let w1, . . . , wt ∈ F
r
q be any fixed collection of t = (qr − 1)/(q − 1)

nonzero vectors such that every two of them are linearly independent. By Claim 2.5,
in a randomW the t corresponding vectors ofW are, essentially, pairwise independent
and uniform over V †. Let us denote by ωi, 1 � i � t, the element of W corresponding
to wi (i.e., ωi is a linear combination of the basis vectors of W with scalar coefficients
being the r field elements of wi).

For each field element i ∈ Fq, define Bi = ∪t
j=1(A + i · ωj). Note that B =

∪i∈FqBi. Fix any nonzero i ∈ Fq. For a random W , the vectors i · ω1, . . . , i · ωt are
pairwise independent. By Chebyshev’s bound of Lemma 2.2, the probability that
(1/|Bi|) ·

∑
x∈Bi

F (x) is less than β/2 or more than 3β/2 is at most 4/(βt). By the
union bound, the probability that at least one of theBi’s deviates from the expectation
is at most 4(q−1)/(βt). Thus, with probability at least 1−4/(βqr−2) = 1−4q2/(βs), a
random affine subspaceB containingA is a good sample for estimating the expectation
of F . Since s =

√
k for Subspaces, we get the desired lemma.

Note that for each λ(·)-sampler in Lemmas 2.11 and 2.12 above, the function λ(·)
is monotone nonincreasing. Hence, for every 0 � β � 1 and λ = λ(β), all of these
samplers are also (β, λ)-samplers.
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2.3.3. Properties of samplers and their subgraphs. Here we prove two
properties of samplers, which will be useful for the analysis of our decoding algorithm.
These properties basically show that samplers are “robust” to deletions of vertices.

The first property says that for any two large vertex subsetsW and F of a sampler,
the fraction of edges between W and F is close to the product of the densities of W
and F .

Lemma 2.13. Suppose G = G(L,R) is a (β, λ)-sampler. Let W ⊆ R be any set
of measure ρ, and let F ⊆ L be any set of measure β. Then we have

Prx∈L,y∈N(x)[x ∈ F & y ∈ W ] � β(ρ− λ)/2.

Proof. We need to estimate the probability of picking an edge between F and W
in a random experiment where we first choose a random x ∈ L and then its random
neighbor y. Since the graph G is assumed to be biregular, this probability remains the
same in the experiment where we first pick a random y ∈ R and its random neighbor
x ∈ N(y). The latter is easy to estimate using the sampling property of the graph G,
as we show next.

Let W ′ ⊆ W be the subset of vertices that have at least β/2 fraction of their
neighbors in F . Since G is a (β, λ)-sampler and W is of measure ρ, we get that
W ′ is of measure at least ρ − λ. Then, conditioned on picking a vertex y ∈ W ′, the
probability that its random neighbor is in F is at least β/2. The lemma follows.

The second property deals with edge-colored samplers. Suppose that all edges in
a biregular graph G = G(L,R) are colored with two colors, red and green, so that
the number of red edges is at most t for some t � 0. Since G is biregular, picking a
random vertex x ∈ L and its random incident edge is the same as picking a random
y ∈ R and its random incident edge, and clearly, the probability of getting a red edge
in both cases is t/|E|, where E is the edge set of G. Now suppose that we are given
a subgraph G′ obtained from G by removing some vertices from R (and all the edges
incident upon the removed vertices). Let W ⊆ R be a subset of the remaining vertices
in G′, and suppose that G′ has at most t red edges. Since G′ is still right-regular (i.e.,
all vertices w ∈ W have the same degree), sampling a random incident edge of a
random vertex w ∈ W still yields a red edge with probability at most t/|E′|, where
E′ is the edge set of G′. For general graphs G, we can’t say that the probability
of getting a red edge remains the same when we pick a random incident edge of a
random vertex x ∈ L (since G′ may not be biregular). However, we prove that this is
approximately true when G is a sampler.

Lemma 2.14. Suppose G = G(L,R) is a (β, λ)-sampler, with the right degree
D. Let W ⊆ R be any subset of density ρ, and let G′ = G(L,W ) be the induced
subgraph of G (obtained after removing all vertices in R \W ), with the edge set E′.
Let Col : E′ → {red, green} be any coloring of the edges of G′ such that at most
αD|W | edges are colored red, for some 0 � α � 1. Then

Prx∈L,y∈NG′(x)[Col({x, y}) = red] � max{2α/(1− λ/ρ), β}.

Proof. We need to estimate the probability of picking a red edge in G′ when we
first pick a random x ∈ L and then pick its random neighbor y in G′. For every x ∈ L,
let dx be the degree of x in G′, and let ξ(x) be the fraction of red edges incident to x
in G′. The probability we want to estimate is exactly μ = Expx∈L[ξ(x)]. If μ � β,
then we are done. So for the rest of the proof, we will suppose that μ > β.

Let W ′ ⊆ W be the subset of those vertices w, where Expx∈N(w)[ξ(x)] � μ/2.
(Here we use N(w) to denote the neighborhood NG′(w) of w in G′, which is the same
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as NG(w) by the definition of G′.) Since G is a (β, λ)-sampler and W has measure ρ
in G, we get that W ′ has measure at least ρ− λ in G, and hence measure 1− λ/ρ in
G′. Hence, we have

(1)
∑
y∈W

Expx∈N(y)[ξ(x)] �
∑
y∈W ′

Expx∈N(y)[ξ(x)] � |W |(1 − λ/ρ)μ/2.

On the other hand,
∑

y∈W

(
D · Expx∈N(y)[ξ(x)]

)
is simply the summation over

all edges (x, y) in G′, where each edge (x, y) with x ∈ L contributes ξ(x) to the sum.
Since the degree of each x is dx, each x ∈ L contributes exactly dxξ(x), which is the
number of incident red edges at x. Hence, the total sum is exactly the number of red
edges in G′, which is at most αD|W | by assumption. It follows that

(2)
∑
y∈W

Expx∈N(y)[ξ(x)] = (1/D)
∑
x∈L

dxξ(x) � |W |α.

Finally, after comparing the bounds in (1) and (2), we conclude that μ � 2α/(1−
λ/ρ).

3. Decoding intersection codes. Let (S, T ) be a pair of families of subsets
of U , and let Code(S, T ) be the intersection code defined for these families. Fix a
function f : U → R. Let C′ be a circuit that ε-computes Code(f). We will give
a randomized decoding algorithm for constructing from C′ a deterministic circuit C
that (1− δ)-computes f , for δ > 0 being the parameter that depends on ε and (S, T ).

Our decoding algorithm A for Code(S, T ) can be defined in terms of the inclusion
and T -graphs. Fix any edge (A,B) of the inclusion graph I(S, T ). Let v = C′(B)|A
be the values that the circuit C′(B) gives for the elements in A.

Let G = G(U \A,N(A)) be the T -graph for A. Let Cons ⊆ N(A) be the subset of
those B′ ∈ N(A) for which C′(B′)|A = v. We will say that such sets B′ are consistent
with B.

Define the circuit CA,v: “On input x ∈ U , if x ∈ A, then output the corresponding
value vx. Otherwise, repeatedly sample random neighbors B′ of x in the T -graph G,
discarding any B′ �∈ Cons , until the first B′ ∈ Cons is obtained. For this B′ ∈ Cons ,
output the value C′(B′)|x. Produce the default (error) output if no B′ ∈ Cons is
found even after O((ln 1/δ)/ε) steps.”

Define the decoding algorithm A: “On an input circuit C′, pick a random edge
(A,B) of the inclusion graph I(S, T ), set v = C′(B)|A, and output the circuit CA,v.”

Remark 3.1. For the described algorithm CA,v to be efficient, we need an efficient
procedure for sampling random neighbors of a given left vertex in the T -graph G(U \
A,N(A)). For both of our running examples, one can easily argue that such efficient
sampling is possible.

We now state the main technical result of our paper: the conditions on (S, T )
under which the decoding algorithm A produces a good circuit CA,v. For the rest of
this section, we set ε′ = ε/2.

Theorem 3.2. Suppose that the inclusion graph I(S, T ) is transitive (and hence
also biregular), the S-graph H is a (μ, δε′2/(256μ))-sampler for every μ > δ/64, and
the T -graph G is a (δ/16, ε′/2)-sampler. Then the algorithm A produces with proba-
bility ε′/2 a randomized circuit CA,v satisfying

Pr[CA,v computes f ] � 1− δ/4,

where the probability is over the inputs and the internal randomness of CA,v.
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Remark 3.3. Note that if a randomized circuit CA,v satisfies the conclusion of
Theorem 3.2, then by randomly fixing its internal randomness we get (with probability
at least 3/4) a deterministic circuit C that (1− δ)-computes f .

We postpone the proof of Theorem 3.2 and use it to prove Theorem 1.6, which
we restate below for convenience.

Theorem 3.4 (Theorem 1.6 restated). Both Independent and Subspaces codes
are efficiently, locally, δ-approximately (ε, O(1/ε))–list-decodable, where

• Independent: δ = O((log 1/ε)/k);
• Subspaces: δ = O(1/(ε2k1/4)).

Moreover, the decoder for the Independent code is a uniform randomized NC0 algo-
rithm that outputs AC0 circuits.

Proof of Theorem 1.6. For Independent, we get by Lemmas 2.11 and 2.12 that
both H and G are λ(·)-samplers with λ(μ) � e−Ω(μk). For μ > δ/64, write μ = cδ,
where c = μ/δ > 1/64. For the graph H , we get that μ · λ(μ) � cδe−Ω(cδk). For
δ = d log(1/ε)/k for large enough constant d, we get e−Ω(cd log 1/ε) = εΩ(cd) � ε′2εcd

′
for

some large constant d′ dependent on d. Assume that ε < 0.9 (if a circuit C′ ε-computes
fk for ε � 0.9, it obviously 0.9-computes fk).5 Choosing a sufficiently large constant
d, we can ensure that εcd

′
< 2−c/256, and so cδe−Ω(cδk) � cδε′22−c/256 � δε′2/256.

Thus H satisfies the assumptions of Theorem 3.2. Setting δ = d(log 1/ε)/k for a large
enough d ∈ N will also make the T -graph G satisfy the assumptions of Theorem 3.2.

For Subspaces, Lemma 2.11 gives us that H is a λ(·)-sampler with λ(μ) =
4/(μ

√
k). Hence, μ ·λ(μ) � 4/

√
k. The latter is at most δε′2/256 for δ � 1024/ε′2

√
k.

Lemma 2.12 says that the graph G is a (δ/16, ε′/2)-sampler for δ � 128q2/(ε′
√
k).

Thus, to satisfy the conditions of Theorem 3.2, we can set δ � 1024q2/(ε′2
√
k), which

is O(1/(ε′2k1/4)) for q � k1/8.
By Remark 3.3, we get in both cases a required deterministic circuit (1 − δ)-

computing f .

Outline of the proof of Theorem 3.2. The proof of Theorem 3.2 will follow from two
technical lemmas proved in the following subsections. First, in section 3.1, we define
certain conditions on our auxiliary graphs (inclusion, S-, and T -graphs) and an edge
(A,B) of the inclusion graph, and we show (in Lemma 3.8) that these conditions are
sufficient for the circuit CA,v described above to satisfy the conclusion of Theorem 3.2.
Then, in section 3.2, we prove (in Lemma 3.11) that a random choice of an edge (A,B)
(as made by our decoding algorithm) will satisfy with probability Ω(ε) the required
sufficient conditions. The two lemmas imply Theorem 3.2. The formal proof of
Theorem 3.2 (taking care of all the parameters) is given at the end of section 3.2.

3.1. Why CA,v works. Intuitively, we are using (A, v) as a consistency check
to see whether to believe C′(B′). To be useful as a consistency check, we should have
the following:

• C′(B) is correct, which means that v = f(A); so if C′(B′) is correct, it will
always be consistent with v on A.

• There are many B′ for A, where C′(B′) is correct.
• On average over B′, where C′(B′) is consistent with A, C′(B′) is correct for
most x ∈ B′ \A.

5In fact, if a circuit C′ ε-computes fk for ε � 0.9, then for k > 1/δ there is a single algorithm
that (1 − δ)-computes f : “Given input x, sample O(log 1/δ) random k-sets B containing x, and
output the majority answer of C′(B)|x.” For the analysis, it suffices to show that for each except
δ/2 fraction of inputs x, there are at least 2/3 sets B containing x such that C′(B) = fk(B), which
is easy to argue.
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As explained above, our proof of Theorem 3.2 will consist of showing that these
conditions suffice, and that relatively many such edges (A,B) exist. In this subsection,
we show that these conditions suffice.

First we sketch an informal argument explaining why the conditions above should
be sufficient. Suppose we have an edge (A,B) satisfying the conditions above. The
relative abundance of consistent sets B′ for A can be used to show that our decoding
algorithm is unlikely to time-out (i.e., there will be very few inputs x where random
sampling fails to produce a B′ containing A and x such that C′(B′) is consistent with
A). Next, the condition that consistent sets B′ are usually mostly correct implies
that, conditioned on our algorithm sampling a consistent set B′, the value C′(B′)|x
is likely to be correct; intuitively, for a random input x and a random consistent set
B′ containing x, this x is random within B′, and so C′(B′)|x is likely correct.

Next we give a formal argument. We need the following definitions.
Definition 3.5 (correct edges). For a set B ∈ T , let Err (B) denote the subset

of those x’s in B where C′(B) disagrees with fk(B), and let err(B) = |Err(B)|/|B|.
A set B ∈ T is called correct if err(B) = 0. A set B ∈ T is called α-incorrect if
err(B) � α. For the inclusion graph I(S, T ), we call an edge (A,B) correct if B is
correct.

As before, we set ε′ = ε/2.
Definition 3.6 (good edges). Call an edge (A,B) good if it is correct and at

least ε′ fraction of all edges (A,B′) incident to A are correct.
Definition 3.7 (excellent edges). An edge (A,B) of the inclusion graph is called

α-excellent if it is good, and moreover,

ExpB′∈Cons [err(B
′)] � α,

where the expectation is over uniformly random B′ that are consistent with B.
In other words, for an excellent edge (A,B), we have at least ε′ of correct edges

(A,B′) (and so these B′ ∈ Cons), and at the same time, the average fraction of errors
in the neighbors of A that are consistent with B is less than α. So, conditioned on
sampling a random B′ ∈ Cons , we expect to get a B′ such that C′(B′)|x = f(x) for
most x ∈ B′.

Our circuit CA,v is defined so that it only considers random B′ ∈ Cons . This
circuit will agree with f well on average, assuming that A, v came from some excellent
edge (A,B), and assuming that the T -graph is a sampler.

The following is the main result of this subsection.
Lemma 3.8 (“excellence implies correctness”). Let an edge (A,B) of the inclu-

sion graph I be α-excellent, and let the T -graph G(U \A,N(A)) be a (β, λ)-sampler.
Suppose that λ � ε′/2, α � β/4, and β � δ/16. Then Pr[CA,v computes f ] � 1−δ/4,
where the probability is over uniform x’s and the internal randomness of CA,v.

To prove Lemma 3.8, we consider two cases. First we consider the set F ⊆ U \A
of x’s that have too few edges (x,B′) with B′ ∈ Cons in the T -graph G(U \A,N(A)).
These are the x’s for which CA,v is unlikely to produce any answer and hence fails.
Second, we bound the average conditional probability of CA,v producing an incorrect
answer given that the circuit produces some answer. Note that for every x ∈ U \ A
this conditional probability is the same for all sampling steps of CA,v. So, we can just
analyze this conditional probability for one sampling step.

First, we bound the size of F .
Lemma 3.9. Suppose an edge (A,B) of I is good, and the T -graph G(U\A,N(A))

is a (β, λ)-sampler. Let F be the subset of U \ A with less than μ fraction of their
edges into Cons, where μ = (ε′ − λ)/2. Then the measure of F is at most β.



1654 IMPAGLIAZZO, JAISWAL, KABANETS, AND WIGDERSON

Proof. Suppose that F has density at least β. Let F ′ ⊆ F be of density exactly
β. By the assumption of the lemma, we have that Prx∈U\A,y∈N(x)[x ∈ F ′ & y ∈
Cons ] < βμ = β(ε′ − λ)/2.

On the other hand, we know that Cons has density at least ε′ (by the definition
of goodness of (A,B)). By Lemma 2.13, the fraction of edges in G that go between
F ′ and Cons is at least β(ε′−λ)/2, which contradicts our earlier upper bound.

For a given x ∈ U \ A, let h(x) denote the conditional probability that CA,v

produces an incorrect answer, given that it produces some answer. We will show that
the expectation Expx∈U\A[h(x)] is small.

Lemma 3.10. Suppose (A,B) is α-excellent, and the T -graph G is a (β, λ)-
sampler. Further suppose that α � β/4 and λ � ε′/2. Then Expx∈U\A[h(x)] � β.

Proof. Since CA,v produces an answer on a given input x only if it samples a
consistent neighbor B′ of x in the T -graph G(U \ A,N(A)), we can view h(x) as
follows. Let G′ = G(U \ A,Cons) be the induced subgraph of G, where we remove
all inconsistent vertices from N(A). For each edge (x,B′) of G′, we color it red if
x ∈ Err(B′), and we color it green otherwise. Then h(x) is the fraction of red edges
incident to x in the graph G′.

Let ρ be the measure of Cons in G. We know that ρ � ε′. Let D = |B| be the
right degree of the T -graph G (and hence also of G′). The total number of red edges
in G′ is at most αD|Cons |, by the definition of α-excellence.

By Lemma 2.14, we conclude thatPrx∈U\A,B′∈NG′ (x)[x ∈ Err(B′)] � max{2α/(1−
λ/ρ), β}. By assumption, 1 − λ/ρ � 1 − λ/ε′ � 1/2, and thus 2α/(1 − λ/ε′) � 4α �
β.

Now we can finish the proof of Lemma 3.8.
Proof of Lemma 3.8. Lemma 3.9 implies that for every x ∈ U \ (A ∪ F ), where

F is of measure at most β, there are at least ε′/4 fraction of edges into Cons . Hence
the probability of CA,v not producing any answer in t = d(log 1/δ)/ε′ sampling steps
for such an x is at most δ/8 for some constant d, e.g., d = 100. For each such x, the
probability that CA,v is wrong, given that CA,v produces an answer, is h(x). Hence,
the overall probability (over random x and internal randomness) that CA,v is wrong
is at most β + δ/8 +Expx∈U\A[h(x)]. By Lemma 3.10, the last summand is at most
β, and so the total is at most 2β + δ/8 � δ/4 (since β � δ/16).

3.2. Choosing an excellent edge (A,B). Here we show that if the inclusion
graph I is biregular and if the S-graph H is a sampler, then a random edge (A,B) of
I will be excellent with probability Ω(ε). That is, a random choice is likely to satisfy
the sufficient conditions for the circuit CA,v being correct.

For intuition, remember that a random edge is correct with probability at least
ε, by the assumption on the oracle C′. By a (careful) averaging argument, one can
show that for ε/2 fraction of edges (A,B), it is the case that both (A,B) is correct,
and there are at least ε/2 fraction of correct edges (A,B′). That is, a random edge
(A,B) is good with probability at least ε/2.

For excellence, we use the symmetry in our choices of (A,B′): we can either
choose a random k/2-set A first and then a random k-set B′ containing A, or choose
a random k-set B′ first and then a random k/2-subset A inside B′. Let us consider a
random good edge (A,B) and a random consistent set B′. Suppose that C′(B′) has
many errors. By symmetry, even though (A,B) was chosen first and then we chose
B′, we can think of B′ chosen first and then A chosen randomly inside B′ (and B
being a random set containing A). If B′ has many inputs where C′(B′) is wrong, then
its random subset A is also very likely to contain some of these inputs. But then it
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cannot be that (A,B) is both correct and consistent with B′.
Now we give a formal argument. The following is the main result of this subsec-

tion.
Lemma 3.11 (“excellence is abundant”). Suppose the inclusion graph I is bireg-

ular and the S-graph H is a ν(·)-sampler.6 Moreover, assume that 0 � α � 1 is such
that, for every α/2 < μ � 1, we have μ · ν(μ) � αε′2/4. Then a random edge (A,B)
of I is α-excellent with probability at least ε′/2.

First, we argue the following.
Lemma 3.12. A random edge (A,B) of a biregular inclusion graph I is good with

probability at least ε′.
Proof. Choosing a random edge (A,B) of the inclusion graph I is equivalent

to choosing a random B ∈ T and then choosing a random A ∈ N(B). By the
assumption on C′, a random B ∈ T is correct with probability at least ε. Thus we
have PrA∈S,B∈N(A)[(A,B) is correct] � ε.

For A ∈ S, let P (A) be the event (over a random choice of A ∈ S) that
PrB′∈N(A)[B

′ is correct] < ε/2. Observe that, conditioned on A ∈ S such that P (A),
we get

PrA∈S,B∈N(A)[(A,B) is correct | P (A)] < ε/2,

and so,

PrA∈S,B∈N(A)[((A,B) is correct) & P (A)] < ε/2.

Finally, the probability that a random edge (A,B) is good is equal to

PrA,B[(A,B) is correct]−PrA,B[((A,B) is correct) & P (A)] > ε− ε/2 = ε/2,

which is equal to ε′, as required.
Now we can prove Lemma 3.11.
Proof of Lemma 3.11. To show that a good edge (A,B) is α-excellent, it suffices

to argue that ∑
B′∈Cons: err(B′)>α/2

err (B′) � (α/2)|Cons |,

where Cons is the set of all B′ ∈ N(A) that are consistent with B. This expression
can be equivalently rewritten as

(3) PrB′∈Cons,x∈B′ [err(B′) > α/2 & x ∈ Err (B′)] � α/2.

For independent random A ∈ S and B ∈ N(A), let E1(A,B) be the event that
(A,B) is good, but the inequality (3) does not hold (i.e., the probability in (3) is
greater than α/2).

For independent random A ∈ S, B ∈ N(A), B′ ∈ N(A), and x ∈ B′, let
E(A,B,B′, x) be the event that

(A,B) is correct, B′ ∈ Cons , err(B′) > α/2, and x ∈ Err(B′).

6Here we need only that, for any measure μ subset F of left vertices of H, the fraction of right
vertices with no incident edges into F is at most ν(μ).
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The probability of E is the average over all B′ ∈ T of the conditional probabilities
of E given B′. Consider any fixed B′ with err (B′) > α/2. For each such B′, the set
A is a uniform element of N(B′) in the inclusion graph. By the sampling property
of the S-graph H(B′, N(B′)), the probability that a random A ∈ N(B′) completely
misses the subset Err (B′) is at most ν(err(B′)). If A has nonempty intersection with
Err(B′), then it cannot be the case that both (A,B) is correct and B′ ∈ Cons . Hence,
given B′, the conditional probability of the event E is at most ν(err(B′)) · err(B′),
and so,

Pr[E] � 1

|T |
∑

B′∈T :err(B′)>α/2

err(B′) · ν(err (B′)),

which is at most αε′2/4 by the assumption of the lemma.
We have

(4) Pr[E | E1] > (α/2)PrB′∈T [B
′ ∈ Cons | E1] � αε′/2,

where the first inequality is by the definition of the event E1, and the second in-
equality by the definition of goodness of (A,B). On the other hand, Pr[E | E1] =
Pr[E & E1]/Pr[E1] � Pr[E]/Pr[E1]. Combined with (4), this implies that Pr[E1] �
Pr[E] · 2/(αε′) � ε′/2.

Clearly, PrA∈S,B∈N(A)[(A,B) is α-excellent] is at least

PrA∈S,B∈N(A)[(A,B) is good]−PrA∈S,B∈N(A)[E1].

By Lemma 3.12, the first probability in the difference above is at least ε′, and, by
what we showed earlier, the second probability is at most ε′/2. Therefore, the lemma
follows.

Proof of Theorem 3.2. As explained in the proof outline earlier, we will use
Lemmas 3.8 and 3.11. We set β = δ/16, λ = ε′/2, α = β/4 = δ/64, and ν(μ) =
αε′2/(4μ) = δε′2/(256μ). This choice of parameters satisfies the assumptions of both
lemmas, and the proof of Theorem 3.2 easily follows from the lemmas.

4. Extensions.

4.1. Approximate version of the uniform direct product theorem. In
this section, we prove Theorem 1.8, which we restate below.

Theorem 4.1 (Theorem 1.8 restated). Both Independent and Subspaces codes
are efficiently, locally, (δ,Ω(δ))-approximately (ε, O(1/ε))–list-decodable, where

• Independent: δ = O((log 1/ε)/k);
• Subspaces: δ = O(1/(ε2k1/4)).

The proof is along the same lines as that of Theorem 1.6 given in the previous
section. We just need to make the following modifications in our definitions. Before, if
C′(B) was correct, it was correct on the subset A. Here, we need to bound the chance
that, even if C′(B) is almost correct, its number of mistakes on A is disproportionately
high. We include this in the definition of “correct edge,” so that two correct edges for
A will be (mostly) consistent on A. Second, before, we had the correct values for A,
and any deviation from these values could be used to rule out C′(B′) as inconsistent.
Now, our values for even good A and B′ are somewhat faulty, and thus could be
somewhat inconsistent. We need to redefine consistency to allow a small number
of contradictory values, and then show that any very incorrect C′(B′) will have too
many inconsistent values with high probability.
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Recall that for B ∈ T , Err(B) is the set of those x ∈ B, where C′(B)|x �= f(x),
and err(B) = |Err (B)/|B|. We say that a set B ∈ T is δ′-correct if err(B) � δ′ (i.e.,
C′(B) and fk(B) disagree on at most δ′ fraction of elements of B). An edge (A,B) of
the inclusion graph I is called δ′-correct if B is δ′-correct and |A ∩ Err(B)| � 2δ′|A|.

For this section, we set ε′ = ε/4. Call an edge (A,B) of I good if it is δ′-correct
and at least ε′ fraction of all neighbors B′ of A are δ′-correct.

The definition of consistency changes as follows. Two neighbors B,B′ of A are
called consistent if C′(B)|A and C′(B′)|A disagree on at most 4δ′ fraction of elements
in A. Note that for any two δ′-correct edges (A,B) and (A,B′), we have that B and
B′ are consistent. As before, for a given edge (A,B), we denote by Cons the set of all
B′ that are consistent with B. Finally, the definition of an excellent edge is as before:
An edge (A,B) is α-excellent if it is good, and moreover, ExpB′∈Cons [err (B

′)] � α.

Next we need to verify that with these modifications in the definitions, all lemmas
of the previous section go through. It is straightforward to check that all lemmas
in section 3.1 continue to hold (with the same proofs) with respect to these new
definitions.

For the lemmas of section 3.2, we need to argue that a random edge (A,B) is
excellent with probability Ω(ε). For this, we need an analogue of Lemma 3.12.

Lemma 4.2. Suppose the inclusion graph I is biregular, and the S-graph H is a
(δ′, 1/2)-sampler. Then a random edge (A,B) of the inclusion graph I is good with
probability at least ε′.

Proof. We choose a random edge (A,B) of I by choosing a random B ∈ T first,
and then choosing a random A ∈ N(B). By the assumption on the circuit C′, the
probability that a random B ∈ T is δ′-correct is at least ε. For every fixed δ′-correct
set B, the sampling property of the S-graph implies that PrA∈N(B)[|A ∩ Err(B)| >
2δ′|A|] � 1/2. It follows that a random edge (A,B) is δ′-correct with probability at
least ε/2.

Similarly to the proof of Lemma 3.12, let P (A) be the event thatPrB′∈N(A)[(A,B
′)

is δ′-correct] < ε/4. We get that

PrA∈S,B∈N(A)[((A,B) is δ′-correct) & P (A)] < ε/4.

Finally, the probability that (A,B) is good is equal to the probability that it is
δ′-correct, minus the probability that it is δ′-correct and the event P (A) happens. The
former is ε/2, and the latter is less than ε/4. Thus (A,B) is good with probability at
least ε/4, as required.

We have the following analogue of Lemma 3.11.

Lemma 4.3. Suppose the inclusion graph I is biregular, and the S-graph H is
a ν(·)-sampler. Assume that 1 � α � 24δ′ is such that for every 1 � μ > α/2,
μ · ν(μ) < αε′2/4. Then a random edge (A,B) of I is α-excellent with probability at
least ε′/2.

Proof sketch. Compared with the proof of Lemma 3.11, the only change is in the
argument to upperbound Pr[E(A,B,B′, x)]. This is modified as follows. Condition
on any set B′ ∈ T that is μ-incorrect for μ > α/2. By the sampling property of the S-
graph, the probability that a random neighbor A ∈ N(B′) has less than μ/2 fraction of
elements from Err(B′) is at most ν(μ). Consider any fixed A that has more than μ/2
fraction of elements from Err (B′). For any neighbor B of A such that B is consistent
with B′, we have that A contains more than (μ/2 − 4δ′)|A| elements from Err(B),
which is more than 2δ′|A| for μ > α/2 � 12δ′, and so the edge (A,B) is not δ′-correct.
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This implies that the conditional probability Pr[E(A,B,B′, x) | B′] � μ · ν(μ). The
rest of the proof is exactly the same as that of Lemma 3.11.

With the lemmas above, we get the proof of Theorem 1.8 in the same way as the
proof of Theorem 1.6 for δ′ � Ω(δ).

4.2. Derandomized direct product theorems. Here we will prove Theo-
rem 1.9, restated next.

Theorem 4.4 (Theorem 1.9 restated). There is an absolute constant c > 0 so
that for any constant 0 < δ < 1, and any functions t = t(n), k = k(n), ε = ε(n) ≥
max{e−δk/c, e−Ω(

√
n), t−1/c}, and K = K(n) = O(1/(εδ)8), if f : {0, 1}n → {0, 1} is

δ-hard for BPTIME(t)// log t , then the function h defined from f as described above
is (1− ε)-hard for BPTIME(t1/c)//(1/c) log t. The input size of h is O(n).

Proof. For K = poly(1/ε) and k = O(log 1/ε), let K denote the collection of
all k-subsets of {1, . . . ,K}. We need to analyze the function h : T × K → {0, 1}k
mapping (T, i1, . . . , ik) to g(T )|i1,...,ik , where T is a collection of affine d-dimensional
subspaces of Fm

q .

First we analyze the input size of h. It consists of O(n) bits to describe a
constant-dimensional affine subspace T , plus k logK = O((log 1/ε)δ−1 · (log 1/ε +
log 1/δ)) = O((log 1/ε)2) bits to specify the k-subset of {1, . . . ,K} for constant δ. For
ε ≥ e−Ω(

√
n), we get that the total input size is O(n).

Suppose h is ε-computable in BPTIME(t1/c)//(1/c) log t. Given a circuit ε-com-
puting h, we will show how to efficiently compute a list of circuits, one of which
(1−δ)-computes f . This will imply that f is (1−δ)-computable in BPTIME(t)// log t,
contrary to the assumption of the theorem.

Our argument follows along the lines of a standard analysis of code concatenation
(see, e.g., [STV01]). Suppose we have a circuit C′ that ε-computes h. By averaging,
we get that for at least ε/2 fraction of T ∈ T , the equality C′(T, κ) = g(T )|κ holds
for at least ε/2 fraction of k-subsets κ ∈ K. Call Tgood the set of such good T ’s.

By Theorem 1.6, we know that the Independent intersection code is δ′-approxi-
mately (ε/2, O(1/ε))–list-decodable. So, for every T ∈ Tgood, we can efficiently recover
a list of � = O(1/ε) length-K strings, one of which (1− δ′)-agrees with g(T ).

For each T ∈ T , let us order the strings returned by our approximate list-decoding
algorithm on input C′(T, ·). Define a list of � circuits C′′

1 , . . . , C
′′
� for g(T ), where

C′′
i (T ) outputs the ith K-bit string on the list corresponding to T . By averaging,

there is some 1 � i � � such that C′′
i (T ) will (1− δ′)-agree with g(T ) for at least 1/�

fraction of inputs T ∈ Tgood, which is at least Ω(ε2) fraction of all inputs T to g. Let
us call such a circuit C′′

i approximately good for g.

By Theorem 1.8, the Subspaces intersection code is (δ, δ′)-approximately (Ω(ε2),
O(1/ε2))–list-decodable. Thus, for each of our � circuits C′′

1 , . . . , C
′′
� , we efficiently

get O(1/ε2) new circuits such that, if C′′
i is an approximately good circuit for g, then

the list of circuits obtained from that C′′
i will have a circuit (1 − δ)-computing f .

Overall, we efficiently construct a list of O(�/ε2) = O(1/ε3) circuits for f , one which
will (1 − δ)-compute f . Hence, f is not δ-hard for BPTIME(t)// log t, which is a
contradiction.

4.3. Hardness condensing. In this subsection, we reinterpret the results of the
previous section to give a version of hardness condensing for the semiuniform model,
proving Theorem 1.10, which we restate below.

Theorem 4.5 (Theorem 1.10 restated). For an absolute constant c > 0, if a
function f is δ-hard for BPTIME(t)// log t, then every probabilistic t1/c-time algorithm
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C has probability at most ε = max{q−d/16, t−1/c} (over random B ∈ T and the internal
randomness of C) of producing a circuit that (1− Ω(δ))-computes f |B.

Think of the sets B as being exponentially large but succinctly representable (as
in the subspace construction for large values of k = qd). Before, we assumed to have
an oracle C′ such that C′(B) is supposed to output the tuple of values of f on all
(or most) elements in B. Now we will think of C′ as an algorithm that, on input
B, outputs a circuit VB such that VB(x) = f(x) on all (or most) x ∈ B. That is,
instead of being given the k-tuple of values explicitly, we are now given these values
implicitly, via a circuit which presumably computes the function f |B.

We can still carry out the steps of our decoding algorithm in this new setting.
For example, to check the (approximate) consistency of C′ on two sets B and B′

containing some common subset A, we simply use random sampling to estimate the
fraction of elements x ∈ A, where VB(x) �= VB′(x). Thus, if f is hard, we can conclude
that for almost all B, the restricted function f |B is about as hard as f . Since fB is
defined on fewer inputs than f , but has about the same average-case hardness as f
(for most B), this can be viewed as a randomized procedure for hardness condensing,
with respect to the semiuniform model of computation.

To get a precise statement of this idea, we extend the definition of semiuniform
time of [TV02] to families of functions. Consider a family of functions fh(x) = F (h, x),
where h ∈ H and x ∈ U = {0, 1}n. Call the family fh (1 − ε)-hard to δ-compute in
semiuniform time t if, for any time t(|h| + n) probabilistic algorithm A(h, r) which
produces a circuit Ch,r on n bit inputs x, we have Prh,r[Ch,r δ-computes fh] ≤ ε.

Assume S and T meet the conditions of Theorem 3.2, and that furthermore,
we can describe B ∈ T and A ∈ S as strings of length n1, and sample uniformly
from either, using at most n2 random bits, in time polynomial in n1 + n2. For
x of length n2, let fB(x) be f applied to the random element of B obtained by
using string x in the sampling algorithm. (For example, in the case that B is a d-
dimensional affine subspace of (Fq)

m, we can represent B by its basis and skew vectors
b1, . . . , bd, v, with n1 = (d+1)m log q bits. Then with n2 = d log q bits, we can sample
from B by picking random α1, . . . , αd and letting y = α1b1 + · · · + αdbd + v. Then
fb1,...,bd,v(α1, . . . , αd) = f(α1b1 + · · ·+ αdbd + v).)

Then by altering the previous proof of Theorem 1.8 as specified above, we have
the following theorem.

Theorem 4.6. Let S, T , δ, ε meet the conditions of Theorem 3.2 and be efficiently
describable and sampleable as above. There is a constant c so that if f is δ-hard for
BPTIME(t(n))// log t(n), and ε > t(n)−1/c, then the family fB is (1 − ε)-hard to
(1− Ω(δ))-compute in semiuniform time t(n)1/c.

The only difference is that the algorithm C′, on set B, generates a circuit VB

rather than values v. The advice becomes (A, VB), and when we generate B′ with
A ∪ x ⊆ B′, we use the algorithm to compute the circuit VB′ , and then we estimate
consistency by randomly sampling O((log 1/ε)/δ2) elements a ∈ A and seeing for how
many VB(a) �= VB′(a).

Theorem 1.10 is equivalent to the following corollary of Theorem 4.6.

Corollary 4.7. Let T be the family of affine subspaces of dimension d of Fm
q ,

where d ≥ 8. For some absolute constant c, if f is δ-hard for BPTIME(t(n))// log t(n),
then the family f |B for B ∈ T is (1 − ε)-hard to (1 − Ω(δ))-compute in semiuniform
time t(n)1/c for ε = max{q−d/16, t(n)−1/c}. Moreover, each f |B is equivalent to a
function on d log q bit inputs.

Finally, we observe that Corollary 4.7 can be used to prove the following deran-
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domized hardness amplification result.
Theorem 4.8. Let δ > 0, 2

√
n+1 ≥ q ≥ 2

√
n, and let T be the family of affine

subspaces of dimension d = 8 of Fm
q , let k(n) = O(

√
n/δ), and let t(n) ≤ 2

√
n. For

some absolute constant c, if f is δ-hard for BPTIME(t(n))// log t(n), then the function
g(B, y1, . . . , yk) = (f |B)k(y1, . . . , yk) for B ∈ T and y1, . . . , yk ∈ B, is 1 − t(n)−1/c

hard for BPTIME(t(n)1/c)//(1/c) log t(n). Moreover, g is equivalent to a function on
O(n) bits.

Proof. Assume we have an algorithm that with probability ε > t(n)1/c > e−k(n)δ/c

produces a circuit that ε-computes g = (f |B)k in time t′(n) = t(n)1/c. Then for each
of the ε/2 B’s where the conditional probability of success for the circuit is at least
ε/2, we can use the list decoder for our Independent code to get a circuit 1 − Ω(δ)
computing fB in time t′(n)/poly(ε). In other words, the family f |B has a semiuniform
algorithm that 1−Ω(δ)-computes it with probability poly(ε). By Theorem 4.6, f has
a semiuniform time t′(n)/poly(ε) algorithm that (1 − δ)-computes f with poly(ε)
success, a contradiction to the assumed hardness.

5. k-XOR code. Here we prove Theorem 1.11, restated below.
Theorem 5.1 (Theorem 1.11 restated). The k-XOR code is efficiently, locally,

δ-approximately (1/2 + ε, O(1/ε2))–list-decodable for δ = O((log 1/ε)/k).
As a warm-up, we first list-decode a code which is a concatenation of our In-

dependent code and the standard Hadamard code. The proof of Theorem 1.11 will
follow along similar lines.

Let Indk be Independent k-wise direct product code. Let Hadk be the Hadamard
code on messages of size k; i.e., for every message msg ∈ {0, 1}k, the encoding
Hadk(msg) is a function mapping a string r ∈ {0, 1}k to the inner product 〈msg , r〉
over the binary field F2. Define Codek to be the concatenation of Indk and Hadk,
i.e., Codek(f) is a function mapping (x1, . . . , xk; r) to

∑k
i=1 f(xi) · ri mod 2 for

xi ∈ {0, 1}n and r ∈ {0, 1}k.
We will list-decode this code using the algorithm of [GL89] for the Hadamard code

and our algorithm A for the Independent code. First we state the result of Goldreich
and Levin.

Theorem 5.2 (see [GL89]). There is a probabilistic algorithm A with the fol-
lowing property. Let h ∈ {0, 1}k be any string, and let B : {0, 1}k → {0, 1} be any
predicate such that |Prr∈{0,1}n [B(r) = 〈h, r〉]− 1/2| � γ for some γ > 0. Then, given
oracle access to B and given γ, the algorithm A runs in time poly(k, 1/γ) and outputs
a list of size l = O(1/γ2) such that with high probability the string h is on this list.

Using the Goldreich–Levin algorithm of Theorem 5.2, we will show the following.
Theorem 5.3. The code Codek is efficiently, locally, δ-approximately (1/2 +

ε, O(1/ε2))–list-decodable for δ = O(log 1/ε/k).
Proof. Let C′ be the circuit which (1/2 + ε)-computes Codek(f). For a given k

subset x̄ = (x1, . . . , xk), define γx̄ = Prr[〈fk(x̄), r〉 = C′(x̄; r)]−1/2. Clearly, we have
Expx̄[γx̄] � ε (since C′ (1/2 + ε)-computes Codek(f)).

For a given x̄ = (x1, . . . , xk), we set h = fk(x̄) and B(r) = C′(x̄; r) and run
the Goldreich–Levin algorithm with γ = ε/2. For every x̄ with |γx̄| � ε/2, the
Goldreich–Levin algorithm will return a list h1, . . . , hl of size l = O(1/ε2) that, with
high probability, contains h.

For each hi on the list, define γx̄,i = Prr[〈hi, r〉 = C′(x̄; r)] − 1/2. By random
sampling, we can efficiently estimate each γx̄,i to within a constant factor, with high
probability. Let γ̃x̄,i denote the corresponding approximation. We will choose string

hi with probability proportionate to (γ̃x̄,i)
2, i.e., with probability (γ̃x̄,i)

2/
∑l

j=1(γ̃x̄,j)
2.
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For the analysis, first observe that 2γx̄,i is the discrete Fourier coefficient at hi

of the Boolean function C′(x̄, ·). By Parseval’s identity, we have
∑l

j=1 4 · γ2
x̄,i � 1.

Assuming that we have constant-factor approximations of all γx̄,i’s and that h was
on the list, we conclude that the described algorithm outputs h with probability
Ω(γ2

x̄). Since the assumed two events happen with high probability, we get that the
probability of producing h is at least α · γ2

x̄ for some absolute constant α > 0.
Denote by X the set of all inputs x̄, and by G the set of those x̄ where |γx̄| �

ε/2. The probability (over a random x̄ and internal randomness) that the described
algorithm outputs the correct string fk(x̄) is

(1/|X |)
∑
x̄∈G

α · γ2
x̄ � (1/|X |)

⎛
⎝∑

x̄∈X

α · γ2
x̄ −

∑
x̄∈X\G

α · γ2
x̄

⎞
⎠ .

The first term is α times Expx̄[γ
2
x̄] � (Expx̄[γx̄])

2 � ε2, by Cauchy–Schwarz and the
lower bound Expx̄[γx̄] � ε. The second term is at most α · ε2/4 by the definition of
G. So the overall success probability of the described algorithm at computing fk is
at least Ω(ε2).

Finally, we apply Theorem 1.6 to the described algorithm for fk, concluding that
the code Codek is efficiently, locally, δ-approximately (1/2+ε, O(1/ε2))–list-decodable
for δ = O((log 1/ε)/k).

To prove Theorem 1.11, we will show how to list-decode the code obtained by
concatenating Ind2k with the truncated Hadamard code Had2k,k, where the given
2k-bit message msg is encoded by the string of inner products 〈msg , r〉 mod 2, over
all 2k-bit strings r of Hamming weight exactly k. More precisely, we consider the
following code Code(x1, . . . , x2k; r) =

∑2k
i=1 f(xi)ri mod 2, where r ∈ {0, 1}2k have

Hamming weight exactly k.
First we observe that given a circuit C which (1/2 + ε)-computes the k-XOR

encoding of f , the following circuit C′ will (1/2 + ε)-compute the encoding Code
defined above: “Given (x1, . . . , x2k; r) for xi ∈ {0, 1}n and r ∈ {0, 1}2k of Hamming
weight k, let y1, . . . , yk be the subset of (x1, . . . , x2k) corresponding to the k positions
i, where ri = 1. Output the value C(y1, . . . , yk).”

Indeed, for uniformly random 2k-subsets (x1, . . . , x2k) and a random string r ∈
{0, 1}2k conditioned on having Hamming weight exactly k, our circuit C′ runs the
circuit C on a uniformly random k-subset (y1, . . . , yk), and hence outputs the value
⊕k

i=1f(yi) = Code2k(f)(x1, . . . , x2k; r) with probability at least 1/2 + ε.
We can also get a circuit C′′ that (1/2 + Ω(ε/

√
k))-computes the code Codek

defined earlier: “Given (x1, . . . , x2k; r) for xi ∈ {0, 1}n and r ∈ {0, 1}2k, output a
random bit if the Hamming weight of r is not k. Otherwise, let y1, . . . , yk be the
subset of (x1, . . . , x2k) corresponding to the k positions i, where ri = 1. Output the
value C(y1, . . . , yk).” For the analysis, simply observe that a random 2k-bit string
will have Hamming weight k with probability Ω(1/

√
k). Conditioned on r being of

weight k, we get a correct answer with probability 1/2 + ε; otherwise, we are correct
with probability 1/2.

Applying Theorem 5.3 to the circuit C′′ will yield a list of O(k/ε2) circuits, one
of which (1− δ)-computes f .

To get the optimal O(1/ε2) list size, we will approximately list-decode the inner,
truncated Hadamard code in Code. The idea is as follows. We will mimic the proof of
Theorem 5.3 to argue that with probability Ω(ε2) over random 2k-tuples (x1, . . . , x2k)
and internal randomness, one can produce a 2k-tuple of bits (b1, . . . , b2k) such that for
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all but O(δ) fraction of indices i ∈ [2k], we have f(xi) = bi. Running the approximate
list-decoder of Theorem 1.8, we then get a list of O(1/ε2) algorithms, one of which
(1− δ)-computes f .

We need the following.

Lemma 5.4. Let a = (a1, . . . , a2k) be any 2k-bit string, and let B be a function
mapping 2k-bit strings r of Hamming weight k to {0, 1} such that Prr[〈a, r〉 = B(r)] =
1/2 + η for some unknown η. Suppose we are given γ > 0 such that |η| � γ. Then
there is an algorithm that, given γ and oracle access to B, runs in time poly(k, 1/γ)
and, with probability Ω(η2), outputs a 2k-bit string that agrees with a in all but at
most δ′ fraction of positions for δ′ = O((log 1/γ)/k).

Proof. Given B, we define the following randomized algorithm B′ mapping 2k-
bit strings to {0, 1}: “On a given r, if the Hamming weight of r is k, output B(r);
otherwise, output a random bit.”

It is easy to see that B′(r) will agree with the Hadamard encoding Had2k(a) at r
for at least 1/2+Ω(η/

√
k) fraction of 2k-bit strings r. Running the Goldreich–Levin

list-decoding algorithm on this B′ with the agreement parameter Ω(γ/
√
k), we get

with high probability a list of at most � = O(k/γ2) strings h1, . . . , h�, which contains
our string a. Next we describe an algorithm for producing a string approximately
equal to a, with probability Ω(η2).

For each i ∈ [�], define ηi = Prr[〈hi, r〉 = B(r)] − 1/2, where the probability is
over 2k-bit strings r of Hamming weight k. By random sampling, we can estimate
each ηi to within a constant factor, with high probability. Let η̃i denote the respective
approximations.

Let us order |η̃i|’s from largest to smallest, and let us discard all those strings hi,
where |η̃i| < γ/2. For the remaining strings, assume w.l.o.g. that |η̃1| � · · · � |η̃�′ |.
We partition the strings’ hi’s into groups as follows: Let B1 be the set of all strings
of Hamming distance at most δ from h1; we call h1 a leader of cluster B1. Remove
all strings B1 from our list. Let hj be the first remaining string (according to the
order on η̃i’s). Define B2 to be the set of all remaining strings of Hamming distance
at most δ from hj ; here hj is a leader of B2. Remove B2 from the list, and continue
until all strings are partitioned into disjoint clusters B1, B2, . . . , Bt. For simplicity of
notation, assume that the leaders of these clusters are h1, h2, . . . , ht.

Finally, output a leader hi with probability η̃2i /
∑t

j=1 η̃
2
j .

For the analysis, we will need the following claim.

Claim 5.5.

∑t
i=1 η

2
i � 1/2.

Proof. The idea of the proof is the following. The truncated Hadamard code
Had2k,k maps any two far-apart messages msg1 and msg2 to the codewords code1
and code2 that are almost Hamming distance 1/2 apart. Switching from the {0, 1}
alphabet to the {1,−1} alphabet, the previous statement means that the normalized
inner product Expr[code1(r) · code2(r)] of the vectors code1 and code2 is close to 0,
where the expectation is over 2k-bit strings of weight k.

Thus the encodings y1, . . . , yt of the leaders h1, . . . , ht, respectively, are pairwise
almost orthogonal. It is also easy to see that 2ηi = Expr[yi(r) ·B(r)], and so ηi’s are
the projections of the vector B onto vector yi. If the yi’s were pairwise orthogonal,
we would get that B =

∑t
i=1(2ηi) · yi + B⊥, where B⊥ is orthogonal to every yi

for i ∈ [t]. Taking the normalized inner product of B with itself, we would get
Expr[(B(r))2] =

∑t
i=1(2ηi)

2 + Expr[(B
⊥(r))2]. Since (B(r))2 = 1 for every r, we

conclude that
∑t

i=1(2ηi)
2 � 1.

In reality, the vectors’ yi’s are pairwise almost orthogonal, and so the calculations
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will be slightly more complicated but will follow the same idea. For notational conve-
nience, denote αi = 2ηi. Let us write the vector B = (

∑t
i=1 αi ·yi)+(B−

∑t
i=1 αi ·yi).

Also for notational convenience in the rest of the proof, let us denote by 〈B, yi〉 the
normalized inner product Expr[B(r) · yi(r)]. We have

1 = 〈B,B〉 =
∑
i,j

αiαj · 〈yi, yj〉

+2

〈
t∑

i=1

αi · yi, B −
t∑

i=1

αi · yi

〉
+

〈
B −

t∑
i=1

αi · yi, B −
t∑

i=1

αi · yi

〉
.

The last term on the right-hand side is nonnegative, and after dropping it we get the
following:

1 � 2
∑
i

α2
i −

∑
i,j

αiαj · 〈yi, yj〉 =
∑
i

α2
i −

∑
i
=j

αiαj · 〈yi, yj〉.

Hence,
∑

i α
2
i � 1 +

∑
i
=j αiαj · 〈yi, yj〉. Since |αi| � 1 for all i, the latter is at most

1 + t2 ·maxi
=j{〈yi, yj〉}.
To finish the proof, we need to upperbound t and maxi
=j{〈yi, yj〉}. We start

with the latter. Consider any two 2k-bit messages msg1 and msg2 that differ in at
least δ′ fraction of positions. Then the normalized inner product of their respective
encodings (in the {1,−1} alphabet) will be Expr[(−1)〈msg1⊕msg2,r〉], where r ranges
over all 2k-bit strings of Hamming weight k. Using the Chernoff–Hoeffding bounds,
this expectation can be upperbounded by e−Ω(δ′k).

The bound on t can be obtained by the Johnson bound: if y1, . . . , yt have pairwise
inner products at most e−Ω(δ′k) in absolute value, and each |〈yi, B〉| � γ for i ∈ [t],
then t � 1/(γ2−e−Ω(δ′k)) (see, e.g., [IJK06]). For δ′ = d(log 1/γ)/k for a large enough
constant d, we get that t2 ·maxi
=j{〈yi, yj〉} � 1. The claim follows.

Suppose that our string a was put in a cluster with a leader hi. This means that
the (approximation of the) agreement of the truncated Hadamard encoding of hi with
B(r) is at least as big as that of a with B(r) (in absolute values), and that a and hi

are at most δ′ Hamming distance apart. We get by the claim above that hi is output
with probability Ω(η2), as required.

Proof of Theorem 1.11. Let Code be the concatenation of Ind2k and the truncated
Hadamard Had2k,k. As explained earlier, from a circuit C (1/2 + ε)-computing f⊕k,
we can get C′ that (1/2 + ε)-computes Code . For each 2k-subset x̄ = (x1, . . . , x2k),
let εx̄ = Prr[〈fk(x̄), r〉 = C′(x̄, r)] − 1/2. Clearly, Expx̄[εx̄] � ε.

For a given x̄, let a = f2k(x̄), and let B(r) = C′(x̄, r). Run the algorithm of
Lemma 5.4 on this B(r), with the parameter γ = ε/2. If |εx̄| � γ, then we will get
with probability Ω(ε2x̄) a 2k-bit string that agrees with a in all but at most δ′ positions
for δ′ = O((log 1/ε)/k).

As in the proof of Theorem 5.3 above, we then obtain a randomized algorithm
for Ind2k that with probability at least Ω(ε2) (where the probability is over x̄ and
the internal randomness of the algorithm) outputs a string that is at most δ′ distance
away from f2k(x̄). Running the approximate list-decoding algorithm for Ind2k from
Theorem 1.8, we obtain a list of O(1/ε2) circuits, one of which (1− δ)-computes f for
δ � O(δ′).

6. Conclusions. We gave an efficient, approximate, local list-decoding algo-
rithm for the direct product code, with information-theoretically optimal parameters
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(to within constant factors). Our new decoding algorithm is also very efficient (in
uniform randomized AC0) and has a simple analysis. We also defined a natural gener-
alization of direct product codes and intersection codes for families of subsets (S, T ),
and we gave the conditions on (S, T ) that suffice for efficient (approximate, local)
list-decoding of these generalized codes. Finally, we gave a derandomized version of
the direct product code with an efficient decoding algorithm.

An interesting remaining open question is to get a derandomized uniform direct
product theorem with better parameters (pushing the error ε to e−Ω(n), while keeping
the new input size linear in the original input size). Another question is to improve the
parameters of our approximate version of the uniform direct product theorem (The-
orem 1.8), ideally achieving a uniform version of the “Chernoff-type” direct product
theorem in the spirit of [IJK09]. Finally, it is interesting to see whether the ideas from
our new list-decoding algorithm can help in improving the known uniform hardness
amplification results for NP of [Tre05].
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