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Abstract— It is desirable to increase the control sample pe-
riod in cyber-physical systems such that the available processing
power and data transfer are minimized. In this paper, a safety
verification technique is proposed which allows a trade-off
between the size of the sample period and the convergence
rate. The proposed technique is applied to a double integrator
with input saturation and zero-order hold. An expression for
the control law and an explicit relationship between sample
period and control parameters are presented. It is shown that
the proposed control law drives all state trajectories initiated
in the safe set to the origin without violating safety criteria as
long as the sample period remains sufficiently small. Moreover,
if the control signal is bounded between the proposed limits, it is
shown analytically that a pilot-based configuration also remains
in the safe set. The effectiveness of the proposed technique is
verified using numerical simulations.

I. INTRODUCTION

Barrier certificate functions (BCFs) are commonly used

in the safety verification of cyber-physical systems [4],

[6], [8], [9], [14]. Also, barrier Lyapunov functions have

been extensively used to design controllers to enforce state

constraints on a given system [7], [11]. Recently, control

barrier functions have been used along with control Lya-

punov functions in the quadratic programming of safety-

critical systems [1], [2] and constrained stabilization of

nonlinear systems [5]. The existing methods are developed

for continuous time controllers. Moreover, the formulation of

the barrier Lyapunov functions and control barrier functions

creates complexity in deriving an explicit control law, even

in low-order systems.

In this paper, we focus on developing a minimal safety

verification technique for a general nonlinear system where

the control input has a zero-order hold (ZOH) unit. The

proposed technique is an extended version of the contin-

uous time safety verification technique. We then use the

proposed technique as a building block to verify safety of

a quadcopter which operates inside a geofence. Movement

of the quadcopter in each dimension can be simplified as a

double integrator. It is desirable to control the system such

that a specific position barrier such as an altitude limit is

not violated while the control input is subject to saturation

and has a ZOH unit. In other words, the system is allowed

to move freely farther away from the barrier but must stop

smoothly at the barrier without violating the safety criteria.
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Safety verification techniques have been implemented in

physical systems with digital controllers [13], [3] with state-

of-the-art hardware where computational resources are in

abundance. In real-world applications, because of augmenta-

tion of cloud computing in smart networks, it is desirable to

conserve the computational resources and reduce the traffic

of communication lines. So, the sample period of the ZOH

unit can be tuned to minimize the network load while the

safe operation of the system is guaranteed. Our extension of

the continuous time safety verification technique provides a

simple analytic tool that is easy to implement and accommo-

dates the effect of sampling. We enforce exponential decay

on the BCF to compensate the effect of sampling. Hence, the

proposed modification ensures that the time derivative of the

BCF changes by no more than a state-independent constant

in between sample instants. This additional condition allows

us to compute bounds on the control input as a function of

the sample period and system parameters to guarantee the

forward invariance of the safe set.

The contributions of this paper are twofold. First, we pro-

pose a modified version of the BCF-based safety verification

technique suitable for general nonlinear systems with a ZOH

unit in the input, where the ZOH sample period may be larger

than the response time of the plant dynamics. Second, we

apply the results of the first step to a double integrator with

input saturation and ZOH. The proposed technique enforces

an upper bound on the growth rate of the BCF, so the effect

of the ZOH unit can be compensated. We provide explicit

relationships between the control law, ZOH sample period,

input saturation level, and the BCF such that the safe set

is forward invariant. Two control goals are achieved for the

double integrator. First, the proposed control law drives every

initial condition in the safe set toward the origin without

violating safety criteria. Second, when a pilot is in charge,

the modified control law guarantees the safety of the system.

In other words, the system stays in the safe set as long as the

pilot does not violate the safety criteria. The system will stop

at the origin if the pilot wants to violate the safety criteria.

The rest of this paper is organized as follows: We introduce

BCFs with exponential decay rate in Section II and describe

necessary properties of the BCFs to accommodate the effect

of the ZOH. In Section III, we develop a BCF for the

double integrator with input saturation and ZOH. Section IV

proposes safety verification and convergence results for the

double integrator. Section V provides numerical simulations

to show the effectiveness of the proposed technique. Sec-

tion VI concludes the paper.
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II. BARRIER CERTIFICATE FUNCTIONS

A dynamic system is given in the following

d

dt
z = f(z, u) (1)

where z ∈ Z ⊆ R
n, and u ∈ U ⊆ R. In safety verification

applications, it is desirable not only to drive the system to the

origin but also to contain the system trajectory in a predefined

region of the state domain. So, a barrier certificate function

(BCF) with exponential decay rate is introduced to ensure

the operation of the system in the safe domain.

Definition 1 (Kong et al. [6]): a function B(z) : Z → R

is a barrier certificate of system (1) if it is differentiable with

respect to its argument and satisfies the following conditions:

1) B(z0) ≤ 0 where z0 is the initial condition

2) (∂B(z)/∂z) f(z, u) ≤ −αB(z), where u is an input

and α is an arbitrary constant.

Remark 1: Barrier Lyapunov functions [7], [11], control

barrier functions [1], [2], [8], and nested saturation con-

trollers [12] have been widely used to enforce state con-

straints when a reference state trajectory is tracked. In this

work, however, we are not concerned about tracking a refer-

ence state trajectory. Instead, we focus on avoiding a barrier

whose shape is enforced by the input saturation. We have

found BCFs with exponential decay rate sufficiently flexible

to study the problem in hand. Please refer to Ricketts [10]

for a detailed comparison between different forms of barrier

certificates.

If there exists a BCF for the system (1), then it is

straightforward to prove the safety of system (1) using the

following lemma.

Lemma 1 (Kong et al. [6]): Assume that B(z) is a BCF

of the system (1). Then the safety of the system is guaranteed

for B(z), i.e., B(z(t)) ≤ 0 for all t ≥ 0.

A proof is obtained by converting the second condition of

the BCF to the following equality:

d

dt
B(z(t)) + αB(z(t))− g(t) = 0, (2)

where g(t) ≤ 0 and B(z(0)) ≤ 0. The solution of (2) gives

B(z(t)) ≤ 0 for all t ≥ 0.

In a real-world application, however, the control is imple-

mented using a digital processing unit which includes a ZOH

unit. So, it is desirable to extend the results of Lemma 1 to

continuous time systems with a ZOH unit in the input

d

dt
z = f(z, uk), (3)

where uk ∈ U ⊂ U . Control input uk has a constant value

for all t ∈ [tk, tk + T ), where T is the sample period and

k = 0, 1, 2, · · · . Also, the sampled state at time tk is shown

as zk = z(tk). The sampled data version of Lemma 1 is

proposed in the following.

Theorem 2 (Barrier Certificate for General Systems with

ZOH): Consider system (3) and a differentiable function B :

Z → R. Let α ∈ R
+ denote a constant and, given k ∈ N

and zk ∈ Z , let U ⊂ U denote a set of inputs uk such that

∂B(zk)

∂z
f(zk, uk) ≤ −αB(zk). (4)

Furthermore, let there exist β ∈ R such that the solution z(t)
of (3) for the initial condition zk ∈ Z and uk ∈ U satisfy

∂B(z(t))

∂z
f(z(t), uk)−

∂B(zk)

∂z
f(zk, uk) ≤ β (5)

for all t ∈ [tk, tk + 1/α). If

B(zk) ≤
β

α
, c, (6)

then

B(z(t)) ≤ c (7)

for all t ∈ [tk, tk +1/α). Moreover if conditions (4)–(6) are

satisfied with β independent of k, (7) holds for all t ≥ t0.

Proof: Since B(z) is a differentiable function for t ∈
[tk, t+ T ), we have

B(z)−B(zk) =

∫ t

tk

d

dτ
B(z(τ))dτ (8)

=

∫ t

tk

∂B(z(τ))

∂z
f(z(τ), uk)dτ. (9)

From (5) we get

B(z)−B(zk)≤

∫ t

tk

∂B(zk)

∂z
f(zk, uk) + βdτ (10)

≤
∂B(zk)

∂z
f(zk, uk)δ + βδ, (11)

where δ = t− tk. Using (4) we get

B(z)−B(zk)≤−αδB(zk) + αδc (12)

B(z)≤ (1− αδ)B(zk) + αδc (13)

B(z)− c≤ (1− αδ) (B(zk)− c) (14)

From (6) we obtain B(zk) − c ≤ 0. Also, δ ≤ 1/α, thus

(1 − αδ) ≥ 0, therefore B(z) ≤ c for t ∈ [tk, tk + 1/α).
Using induction, one can show that B(z) ≤ c for all t ≥ t0.

We presented Theorem 2 to investigate the safety of

continuous time systems with a ZOH unit at the input.

So, the control signal is only updated at sampling instants.

In between sampling instants, there is no control over the

evolution of the system (and consequently, the rate of change

of B(x, v)). Thus, condition (5) of Theorem 2 enforces an

upper bound on the rate of time variation of B(x, v) along

the system dynamics in between samples.

Remark 2: While Definition 1 uses an arbitrary constant

α, Theorem 2 requires the constant α to be positive. In

additon, the solution of the system (3) is required to evaluate

condition (5) which may restrict the application of Theo-

rem 2. It is possible, however, to present a less conservative

form of Theorem 2 by relaxing condition (5) by enforcing

Lipschitz continuity
∥

∥

∥

∂B(z)
∂z

f(z, uk)−
∂B(zk)

∂z
f(zk, uk)

∥

∥

∥

‖z − zk‖
≤ β. (15)
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Fig. 1: Shaded area shows the safe set of the second order

system.

Furthermore, one has to assume that ‖f(z, uk)‖ is bounded

to proceed with the proof of Theorem 2.

III. BARRIER CERTIFICATE OF DOUBLE INTEGRATOR

WITH INPUT SATURATION AND ZOH

Consider the following double integrator

d

dt
x = v (16)

d

dt
v = uk, −µ ≤ uk ≤ µ, (17)

where x is position and v is velocity. It is assumed that

the initial position satisfies x0 ≤ 0. The goal of the control

design is to maintain x ≤ 0 for all t ≥ 0.

In addition to sample period, T , the physical limitation

of the control input, −µ ≤ uk ≤ µ, plays a vital role

in safety verification of the system (16)–(17). Consider the

braking command uk = −γ, where 0 < γ < µ. The state

trajectory associated with uk = −γ with initial condition

(x0 < 0, v0 > 0) and final condition (0, 0) is expressed as

x0 + v20/(2γ) = 0 which its plot for v > 0 is shown in

Fig. 1. The initial conditions between the vertical axis and

x0 + v20/(2γ) = 0 require braking command of uk < −γ to

guarantee x ≤ 0. Otherwise, the state trajectories cross the

vertical axis. As shown in Fig. 1, we select the following

safety barrier for the system (16)–(17)

B̂(x, v) = x+
1

2γ
v2. (18)

We argued that B̂(x, v) = 0 defines a safety barrier of the

system under control input −γ ≤ uk ≤ µ. However, the state

trajectories that arrive on the safety barrier (18) do not stop

at the origin. To ensure that the system stops at the origin

we introduce a safety barrier that is quadratic away from the

origin (similar to (18)) but linear close to the origin as shown

in Fig. 1. The modified barrier function is introduced as the

following

B(x, v) =

{

x+ 1
2γ (v

2 + b2), v ≥ b

x+ b
γ
v, v < b,

(19)

where b > 0. When the state trajectory arrives on the linear

segment, we get dx/dt = −(γ/b)x and dv/dt = −(γ/b)vk.

Thus, the system will stop at the origin.

Note that the linear segment of the barrier function is

tangent to the quadratic segment at v = b, making the barrier

function continuously differentiable. The linear segment of

the safety barrier permits a decreasing braking command as

the system approaches the origin, enabling the system to

settle smoothly at the origin. For notational simplicity, we

combine the two cases of (19) into the following

B(x, v) = x+
h(v − b)

2γ

(

v2 + b2
)

+
(

1−h(v−b)
) b

γ
v, (20)

where

h(θ) =

{

1, θ ≥ 0

0, θ < 0.
(21)

We emphasize the usage of the function h(·) solely for

simplicity and as such h(·) is ignored in all subsequent

computations involving time derivatives.

IV. SAFETY VERIFICATION OF DOUBLE INTEGRATOR

WITH INPUT SATURATION AND ZOH

We use (20) to verify the safety of the system (16)–(17).

Conditions (4) and (5) of Theorem 2 are first satisfied in the

following two lemmas respectively.

Lemma 3: If the control signal satisfies

uk ≤ γ

(

− vk − αB(xk, vk)
)

h(vk − b)vk + (1 − h(vk − b))b
, (22)

for some α ∈ R
+, then the condition (4), namely,

[

∂B(xk,vk)
∂x

∂B(xk,vk)
∂v

]

[

vk
uk

]

≤ −αB(xk, vk) (23)

is satisfied for the system (16)–(17) with barrier function

(20).

Proof: Note that h(vk − b)vk + (1− h(vk − b))b ≥ 0.

So, (22) can be rewritten as the following

vk +

(

h(vk − b)

γ
vk + (1− h(vk − b))

b

γ

)

uk ≤

−αB(xk, vk). (24)

With further simplification one arrives at (23) which con-

cludes the proof.

Lemma 4: The following holds for the system (16)–(17)

and barrier function (20) for uk ≤ µ
[

∂B(x,v)
∂x

∂B(x,v)
∂v

]

[

v
uk

]

≤
[

∂B(xk,vk)
∂x

∂B(xk,vk)
∂v

]

[

vk
uk

]

+

+µT

(

1 +
µ

γ

)

, t ∈ [tk, tk + T ), (25)

namely, (5) is satisfied with

β = µT

(

1 +
µ

γ

)

. (26)

Proof: Denote δ = t− tk. From (16)–(17) and (20) and

by using v = vk + ukδ we get

[

∂B(x,v)
∂x

∂B(x,v)
∂v

]

[

v
uk

]

=

= v +
h(v − b)

γ
vuk + (1 − h(v − b))

b

γ
uk

≤
[

∂B(xk,vk)
∂x

∂B(xk,vk)
∂v

]

[

vk
uk

]

+ δuk +
δ

γ
u2
k. (27)



Inequality (27) is valid for all v and vk. Note that 0 ≤ δ ≤ T
and since uk ≤ µ, (25) is satisfied. Also, comparing (25) with

condition (5) of Theorem 2, we get (26).

Recall the definition c , β/α from (6). The following sets

represent the safe set and safety buffer, respectively.

Φc = {(x, v) ∈ R
2 : x ≤ c ∩ B(x, v) ≤ c} (28)

Ψc = {(x, v) ∈ R
2 : 0 < x ≤ c ∩ 0 < B(x, v) ≤ c} (29)

We summarize the safety verification of the double integrator

in the following.

Theorem 5 (Double Integrator with Input Saturation and

ZOH): Consider the system (16)-(17) with 0<T ≤1/α and

the input with saturation and ZOH, −µ ≤ uk ≤ µ, where

α > 0 and µ > 0. The barrier function is (20), with

γ ≤ µ
b− µT

b+ µT
, (30)

and b > µT . If the conditions of Lemmas 3 and 4 are

satisfied, i.e. if uk satisfies

uk ≤ min

{

µ,−γ

(

vk + αB(xk, vk)
)

h(vk − b)vk + (1 − h(vk − b))b

}

.

(31)

for all (xk, vk) ∈ Φc for all k = 0, 1, 2, · · · , then

(x(t), v(t)) ∈ Φc for all t ≥ t0.

Proof: Following the footsteps of Theorem 2, it is

straightforward to show that B(x, v) ≤ c for all t ≥ t0.

Moreover, when v ≤ b then

d

dt
(x− c) ≤ −

γ

b
(x− c) . (32)

Since xk ≤ c then Lemma 1 guarantees that x(t) ≤ c for all

t ≥ tk, and by induction x(t) ≤ c for all t ≥ t0.

Moreover, it is necessary to show that the control signal

does not violate −µ ≤ uk ≤ µ. Rearranging (30), and using

(26) gives the following

γ

(

1 +
µT

b

(

1 +
µ

γ

))

≤ µ

γ
(

1 +
αc

b

)

≤ µ. (33)

From (21), it can be verified that the following inequalities

hold
vk

h(vk − b)vk + (1− h(vk − b))b
≤ 1 (34)

1

h(vk − b)vk + (1− h(vk − b))b
≤

1

b
, (35)

thus (33) gives

γ

(

vk + αc

h(vk − b)vk + (1− h(vk − b))b

)

≤ µ. (36)

Since B(xk, vk) ≤ c, (36) thus gives

− µ ≤ −γ
(vk + αB(xk, vk))

h(vk − b)vk + (1− h(vk − b))b
(37)

which shows that −µ ≤ uk ≤ µ. Hence, the system is

maintained in the safe set without violating the control limits.

The convergence of the state trajectories to the origin is

proven in the following theorem.

Theorem 6 (Convergence of the Double Integrator): Let

b > µT , α ≫ T , and c = β/α, where β is defined in (26).

Let γ be defined as in (30). Then for all (x0, v0) ∈ Φc, the

feedback law

uk = min

{

µ,−γ

(

vk + αB(xk, vk)
)

h(vk − b)vk + (1− h(vk − b))b

}

(38)

guarantees that the system trajectories of (16)–(17) converge

to the origin without leaving the safe set, Φc.

Proof: Since the control signal is saturated in a subset

of Φc, the proof is developed in two main steps. First, we

determine the set where the control is saturated at µ. Using

(38) we get

−γ

(

vk + αB(xk, vk)
)

h(vk − b)vk + (1− h(vk − b))b
≥ µ (39)

Note that h(vk−b)vk+(1−h(vk−b))b ≥ 0. Thus, inequality

(39) gives S(xk, vk) ≤ 0, where

S(x, v) = αγB(x, v) + (γ + µh(v − b)) v +

+(1− h(v − b))µb. (40)

Note that

(γ + µh(vk − b)) vk + (1− h(vk − b))µb ≥ 0. (41)

Thus, S(xk, vk) ≤ 0 always satisfies B(xk, vk) ≤ 0 which

means that the following set

Ω=

{

(x, v) ∈ R
2 : x ≤ 0 ∩ S(x, v) ≤ 0

}

(42)

is a subset of Φc. Moreover, S(x, v) shows the distance from

the border of Ω. Consider the time derivative of S(x, v) along

(16)–(17) for uk = µ

d

dt
S(x, v) = γµ+ αγv +

(

αµv + µ2
)

h(v − b) +

+αbµ(1− h(v − b)). (43)

The following holds

d

dt
S(x, v) =

{

αµ( γ
µ
+ 1)v + γµ+ µ2 v ≥ b

αµ( γ
µ

v
b
+ 1)b+ γµ v < b

. (44)

The time derivative of S(x, v) is always positive in Ω. Also,

Theorem 5 shows that the state trajectory remains in Φc.

Thus, the state trajectory moves toward S(x, v) = 0 until it

reaches the following set

Π=
{

(x, v) ∈ R
2 :

x ≤ c ∩ B(x, v) ≤ c ∩ S(x, v) ≥ 0
}

, (45)

where the control input is no longer saturated. In the set Π
the control law is given as

uk = −γ

(

vk + αB(xk, vk)
)

h(vk − b)vk + (1− h(vk − b))b
. (46)

In the subsequent analysis we show that B(x, v) = 0 attracts

the state trajectories in Π. It is also shown that the state



trajectories converge to the origin. The convergence proof

covers the quadratic and linear segments of the barrier

certificate.

1) Quadratic segment: The system dynamics for vk ≥ b
become

d

dt
x= v (47)

d

dt
v =−γ −

γα

vk
B(xk, vk). (48)

Note that v = vk + ukδ ≥ b − µT > 0. The time derivative

of B(x, v) for all t ∈ [tk, tk + T ) along (47)–(48) equals

d

dt
B(x, v) = v

(

1 +
uk

γ

)

=−α
v

vk
B(xk, vk) (49)

which shows that B(xk, vk) and its time derivative have

different signs. Thus, Theorem 5 and (49) guarantee that the

state trajectory moves toward B(x, v)=0 without leaving Φc.

If B(xk, vk) ≃ 0, then (47)–(48) is simplified to

d

dt
x= v (50)

d

dt
v=−γ. (51)

Introduce the following Lyapunov function

W =
γ

2
x2 +

c+ 1

2
v2, (52)

where the time derivative of W along (50)–(51) is obtained

as

dW

dt
= (x− c− 1)γv (53)

which is negative definite for v ≥ b and x ≤ c. Thus, the

state trajectory moves toward the origin in a narrow band

around B(x, v) = 0.

2) Linear segment: The system dynamics for vk < b are

given in the following

d

dt
x= v (54)

d

dt
v =−

αγ

b
S1(xk, vk), (55)

where

S1(xk, vk) = xk +

(

b

γ
+

1

α

)

vk. (56)

Consider the following set

Σ=

{

(x, v) ∈ R
2 :

S(x, v) > 0 ∩ S1(x, v) < 0 ∩ v < b ∩ x < 0

}

(57)

which is shown in Fig. 2. We have

d

dt
B(x, v) = v − vk − αB(xk, vk), v < b. (58)

x

v

B = 0

v = b
S
1 =

0

S = 0 Σ

Fig. 2: Barrier certificate is B = 0. The control input

saturates in the area below S = 0. The dotted area

represents the set Σ.

If (xk, vk) ∈ Σ, then S1(xk, vk) < 0 and (55) shows that

v>vk . Thus, the time derivative of B(x, v) is positive which

shows that the state trajectory moves toward the barrier.

As the last step, we investigate the evolution of the state

trajectories in the triangular area between S1(x, v) = 0,

B(x, v) = 0, and v = b. Solution of (55) for t ∈ [tk, tk +T )
is given as

v = vk −
αγδ

b
S1(xk, vk). (59)

So, the time derivative of B(x, v) along (54)–(55) is obtained

as
d

dt
B(x, v) = −

α(η + δ)

η
S2(δ, xk, vk), (60)

where

S2(δ, x, v) = x+

(

η +
δ

α(η + δ)

)

v, (61)

where η = b/γ and 0 ≤ δ < T . Also, the following

inequality is valid

η ≤ η +
δ

α(η + δ)
< η +

1

α
. (62)

Thus, S2(δ, x, v) = 0 falls between S1(x, v) = 0 and

B(x, v) = 0. Using b > µT we get η > (µ/γ)T > T .

Also, assuming that α ≫ T , S2(δ, x, v) = 0 is almost

identical to B(x, v) = 0. Furthermore, S2(δ, x, v) < 0 in

the triangular area between v = b, S1(x, v) = 0, and

B(x, v) = 0. Thus, (60) shows that the time derivative of

B(x, v) is positive, meaning that the state trajectory moves

toward the barrier. So, B(xk, vk) ≃ 0 which implies that

S1(xk, vk) ≥ 0, and thus, (59) shows that v < vk. Hence,

the state trajectory moves toward the origin in a narrow band

around x+ (b/γ)v = 0 which means that

d

dt
x = −

γ

b
x, (63)

so the position also moves toward the origin. Since the

barrier meets S1(x, v) = 0 at the origin, at some point

S1(xk, vk) = 0 and the system dynamics (54)–(55) show

that velocity arrives at zero. Because S1(xk, 0) = xk, then

position also arrives at zero.

We have shown that within every sample period the state

trajectory moves toward the barrier B(x, v) = 0. Thus, as

the time progresses, the state trajectories are absorbed by

the barrier and afterward converge to the origin.



Reducing the sample rate results in increasing γ and

expanding the safety region. If the switching point, b, is

chosen very close to µT , then γ becomes very close to zero.

So, the nonlinear part of B(x, v) shifts toward the horizontal

axis meaning that the safety region is at its minimum size.

In contrast, the upper bound of γ increases toward µ as the

value of b increases in comparison to µT . Thus, we suggest

selecting b ≫ µT . So, γ ≃ µ and the size of the safety

region is maximized.

Moreover, α enforces the convergence rate of the system.

A combination of a small α and a large µT leads to a large

c which results in a large safety buffer. So, the results of

Theorem 5 become very conservative. Thus, we suggest the

following

T ≤ min

{

1

α
,
α

µ

}

(64)

to tune T which guarantees a reasonably small safety buffer.

V. SIMULATION RESULTS

The safety verification is designed for pilot-based opera-

tions. The pilot is allowed to send a command −µ ≤ up ≤ µ
to the system. It is the responsibility of the safety verification

algorithm to guarantee that the system trajectory never leaves

the safe set. Thus, the control input is implemented as the

following

uk = max

{

− µ,

min

{

up, µ,
−γ

(

vk + αB(xk, vk)
)

h(vk − b)vk + (1 − h(vk − b))b

}

}

. (65)

We conduct simulations to show the effectiveness of

the proposed safety verification technique with the system

parameters designed as the following: µ = 2, α = 1,

T = 100 ms, b = 2, and γ = 1.63.

The pilot generates a state feedback within the allowed

control limits to drive the system to the state (x, v) = (5, 0)
thereby violating the boundary x ≤ 0. We run simulations for

two scenarios with and without the safety verification (65).

When (65) is not in place, the control signal applied to the

system equals max {−µ,min {up, µ}}. In the case where the

barrier certificate is in place, the control law (65) guarantees

that all the initial conditions in Φc, where c is given as (26),

remain in the safe set. Moreover, all the state trajectories

converge to a the origin. The phase portrait of the system in

both scenarios is shown in Fig. 3. Also, the control signal

satisfies −2 ≤ uk ≤ 2.

VI. CONCLUSIONS

We proposed a safety verification technique for systems

with input saturation. The results were used to design safety

barriers of a double integrator with input saturation and

ZOH. The maximum braking power enforces the shape of

the barrier. Also, the shape of the barrier and the rate of its

variation determine the size of the safety buffer around the

safe set. If the sample period is chosen within the prescribed

limits, the state trajectories converge to the origin. Moreover,

Fig. 3: (dotted green) Barrier certificate. State trajectories

with the pilot (dashed blue) without and (solid red) with

the safety verification.

we showed that when a pilot is present, the proposed safety

verification technique guarantees that the system never leaves

the safe set. Two sets of simulations verified the effectiveness

of the proposed technique, especially for the case of pilot-

based operation.
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