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Figure 1. On its surface, The Orb Game is a 2D Mario-like game. The avatar (in the lower middle) can trigger various ”orbs” throughout the
environment. Doing so will transform the data displayed in the right-hand panel in various ways. In this game, users think they are playing a game and
solving concrete puzzles. However, they are actually writing programs that operate on abstract inputs.

ABSTRACT

Numerous designers and researchers have called for seamless
integration of education and play in educational games. In the
domain of games that teach coding, seamless integration has
not been achieved. We present a system (The Orb Game) to
demonstrate an extreme level of integration: in which the cod-
ing is so seamlessly integrated that players do not realize they
are coding. Our evaluation shows that the integration was
successful: players felt that they were playing a game and did
not realize they were programming. We also present a gener-
alized framework called Programming by Gaming (PbG) to
guide the design of other such games.

INTRODUCTION

A recent trend in educational game design and research goes
by many names: seamless integration [6], immersive didac-
tics [12], immersive learning [1], learning-gameplay integra-
tion [11], intrinsic integration [7], embedded learning [2],
stealth learning [13], and avoiding “chocolate-covered broc-
coli” [10]. Though the words may be different, the sentiment
is the same: Educational games should integrate learning and

play, rather than artificially mashing the two together. A co-
gent empirical argument for why more integration is better
is given by Habgood, who shows that tighter integration of
content and gameplay correlates with higher motivation and
better learning outcomes for players [7].

In this paper, we focus on educational games for teaching pro-
gramming skills. Coding games are a domain in which a lack
of integration can be easily seen in prior work — with the state
of the art falling into two broad categories: 1) programming
tools for building games (e.g. Project Spark, Scratch, and Al-
ice) and 2) games in which programming is a game mechanic
(e.g. Lightbot and CodeSpells). While these systems are en-
gaging and educational in many ways, they do not qualify as
(nor do they attempt to be) experiences that are fully seamless.
It is still the case that:

Users can easily distinguish the coding portion of the experi-
ence from the rest.

A common theme in prior work is that there is a clear visual
and interface difference between two distinct modes: a gam-
ing mode and a coding mode. The user is made fully aware of
the difference. For example, in Scratch, the interface is split
between the code editing panel and the panel in which the
code executes. In CodeSpells, there are distinct game modes:
one in which the player navigates a 3D world and casts spells,
and another in which the player writes code to create spells.

The main contribution of this paper is a game design that
seamlessly merges coding and gaming into a single mechanic.
To achieve this game design, we leverage techniques from



“programming by demonstration” (PbD), a kind of end-user-
programming in which users demonstrate actions on concrete
values in order to construct algorithms. In addition to lever-
aging off-the-shelf PbD techniques, we also address many
of the challenges of mapping PbD onto a gaming interface.
While there is a long line of research on programming by
demonstration, its use in a gaming environment appears to be
novel, and there are unique challenges and opportunities in
this domain. For our purposes, programming by demonstra-
tion enables the player to act on objects in a gaming envi-
ronment, while simultaneously demonstrating to the system
the steps that the program should take. More specifically,
by mapping familiar platformer game mechanics onto vari-
ous data display and transformation operations, our system
allows users to demonstrate various transformations through
familiar gameplay, without having to go into a separate cod-
ing interface. This leads us to a general technique we call
Programming by Gaming (PbG) as well as a particular in-
stantiation of PbG in a game called The Orb Game.

The Orb Game is designed to make players feel that they are
playing a Mario-like platform game, while they are actually
writing algorithms. Because “fully seamless” is an empir-
ically testable metric, we present an evaluation that shows
that players did not realize they were actually writing algo-
rithms when they played The Orb Game. This suggests the
PbG approach can be used to design other fully seamless cod-
ing/gaming experiences —i.e., ones in which users cannot dis-
tinguish the coding from the rest.

FULLY SEAMLESS DESIGN

Programming by Gaming
For coding games, the goal of being fully seamless decom-
poses nicely into two form/function subgoals:

Game-like form factor. The “form-factor” of the interface
should resemble a game, not a programming language. It
should look and feel like a game.

Language-like functionality. But the system needs to also
function like a programming language — i.e. can solve ab-
stract computational problems.

At the highest level, a PbG system maps code-writing op-
erations to in-game actions — thus obtaining something that
looks like a game but functions like a programming lan-
guage. More specifically, though, PbG borrows from the
overarching philosophy of PbD (programming by demonstra-
tion), mapping the user actions to immediate effects on con-
crete values, while generating a more abstract algorithm in
the background. PbG further constrains PbD by requiring
that the user’s actions must be framed as gameplay actions.
We demonstrate a PbG design by introducing The Orb Game,
which maps in-game platformer genre mechanics onto vari-
ous functional programming language operations.

The Orb Game

To understand The Orb Game, let’s look at a usage scenario.
Suppose that Bob sits down to play The Orb Game. Let’s
suppose that Bob has some test cases. There are various
possibilities here: the test cases came from Bob’s teacher;

they came from a busy professional programmer who wants
to save time by crowdsource the writing of a subroutine to a
worker on Mechanical Turk; they came from an automated-
tutoring system who is serving up a pedagogically relevant
problem; or Bob wrote the test cases himself to solve some
computation problem (and for whatever reason, Bob is play-
ing The Orb Game instead of a more traditional coding inter-
face like Python or Excel to derive his answer).

For example, if Bob is supposed to to write an algorithm that
sums up a list of numbers, the test cases might be: “[1,2,3]
to 67, “[2,3] to 57, “[3] to 3%, and “[3,4,5,6] to 18”. Per-
haps whomever provided the test cases also provides a more
human-readable specification like, “Add up the list of num-
bers” (though this is not strictly necessary).

When Bob begins the game, these test cases have already
been provided to his system, so he finds himself confronted
with the interface shown in Figure 1. Notice that the numbers
on the right-hand panel match one of the test cases.

We will analyse each part of The Orb Game as both a pro-
gramming language construct and as a game-mechanic (e.g.
as PbG mappings):

Mission. The directive to “Add up the list of numbers”,
though not shown in the interface in Figure 1, is common
in both games and programming. So the mapping is quite
natural.

o Game-like form factor. Games often contain implicit direc-
tives — i.e. don’t die, don’t run out of time, collect all the
coins — and explicit directives — i.g. “infiltrate the enemy
based and retrieve the documents.” Explicit directives are
known as “missions” or “quests”, depending on the genre
of the game.

o Language-like functionality. For programmers, such direc-
tives are known as “specifications” or “requirements”.

Inventory. The inventory, the right-hand panel of the interface
depicted in Figure 1.

o Game-like form factor. The inventory represents the items
that the player is carrying. This is a common mechanic
found in roleplaying games, where players routinely find,
pick up, and carry in-game equipment in their inventory.
This construct can be assumed to be familiar to players
of many popular games, such as World of Warcraft and
Skyrim.

o Language-like functionality. Insofar as the game is also a
programming language, the inventory contains representa-
tions of the data on which the program is operating. It is
essentially the “heap”. In Figure 1, the inventory contains
a linked list, which in the context of our Bob example was
auto-generated based on the test case.

Avatar. The avatar is the small character standing on a green
block in the center of figure 1.

o Game-like form factor. Avatars are common in almost all
games and represents the player’s in-game persona. This
particular avatar inhabits a 2D world and can jump from



platform to platform — a mechanic found in classic so-
called “platformer” games like Mario and Prince of Persia.

e Language-like functionality. The sequence of avatar ac-
tions serve to define the program’s control flow. As the
player manipulates the avatar, the actions are recorded and
can be played back at runtime.

Activatable Entities. The avatar can interact with the colored
orbs shown in Figure 1.

o Game-like form factor. Many games contain things that
the avatar can interact with. Mario has special blocks with
question marks on them that produce items of interest when
the avatar touches them. Other manifestations are pressure
plates, traps, buttons, switches, treasure chests, and doors.

e Language-like functionality. As a programming language,
these orbs represent primitive functions that can operate on
the data in the inventory. The one with a plus sign can add
two inventory items together. The one with the scissors
can cut the first item off of a list. As a group, such opera-
tions can be thought of as an API — a collection of related
functions.

Bob is familiar with Mario-style platformers, so he takes con-
trol of his avatar and begins to navigate The Orb Game. First,
he enters the white orb in the lower lefthand corner of the
screen — the “return” action. Insofar as the game is a pro-
gramming language, this represents returning from the main
function with whatever is contained in the avatar’s inventory.
Because the avatar is carrying the same list as when the game
began, Bob has written the identity function. But because
“[1,2,3] to [1,2,3]” wasn’t one of the test cases — the game
informs Bob that he has not solved the puzzle, that he should
only exit the level when he has a “6” selected. This is Bob’s
first incorrect solution.

Now Bob explores for some time and comes up with the fol-
lowing (also incorrect) solution. First, Bob causes his avatar
to touch the red orb with the scissors icon. This action rep-
resents the “pop” function. This causes the first element of
the linked list [1,2,3] to become separated from the list (a de-
structive action that both returns the first element from the list
and removes the first element from the list). See Figure 2.2.

Although Bob has performed a concrete action on a concrete
list, the system interprets the action abstractly. In other words,
Bob has written the following code (though he doesn’t know
it):

a = pop (input)

(The variable input represents the input to the sum function,
which Bob is unknowingly writing.)

Bob selects the popped element (the number 1) and carries it
to the yellow orb — the “add” action. Code:

a = pop (input)
b = add(a, ...)

The ellipsis above (...) represents that the add function has
only been partially applied. Now Bob selects the list [2,3] and
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Figure 2. 1) Bob begins with the list [1,2. 3] 2) Bob trlggers the pop
action, popping the first element from the list. 3) Bob pops the second
element from the list. 4) Bob triggers the add action twice, adding 1
and 2, producing 3. Finally, 5) Bob does another pop and another add,
producing a 6.

touches the red orb again — the “pop” function. The element
2 becomes separated from the list. See Figure 2.3. Code:

a = pop (input)
b = add(a, ...)
c = pop (input)

Now, Bob selects the 2 item and carries it to the yellow add
orb, which produces the number 3 (now that it has received
both necessary inputs to perform addition). See Figure 2.4.
Code:

a = pop (input)
c pop (input)
b = add(a, c¢)

Notice that the second and third lines have been swapped.
Because the ¢ variable has been used to complete the add
function, the compiler is able to enforce the correct ordering.

Bob does one more application of pop (producing another 3).
He proceeds to add this 3 to his previously produced 3. See
Figure 2.5. The add box now produces 6. See Figure 2.5.
Bob selects the 6 and exists the level again via the “return”
orb. After all of these concrete actions, we have the following
abstract code:

= pop (input)
= pop (input)
add(a, c)

= pop (lnput)
(b
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= add d)
return

The game produces a congratulatory message because Bob
has found a correct concrete solution for this concrete input.
However, his solution is not very general — a fact that is re-
vealed to him when the game replays his sequence of actions



before his eyes on another one of the test cases (“[3,4,5,6]
to 18”). He sees his avatar go through the same process as
before, but exiting the level with the number 12. The game
informs Bob that he needs to come up with a single solution
that works for all inputs.

Writetime vs Runtime. This brings us to one feature of pro-
gramming languages that is not found in most games.

o Game-like form factor. There are some games that involve
a kind of record/replay mechanic. For example, the game
Braid involves manipulation of time, and the players ac-
tions can be rewound and replayed. In the game The In-
credible Machine, the player builds a virtual Rube Gold-
berg contraption, then presses "Play” and watches it run. In
the popular game of Starcraft, one gives a series of orders
to various troops and then watches those troops perform
those operations.

e Language-like functionality. All language interfaces have
a writetime and a runtime. The distinction between the two
blurs in so-called “reactive” interfaces like Excel — where
the modification of one cell can cause a cascade of changes
across other cells — and in programming by demonstra-
tion systems, where concrete actions are automatically per-
formed on concrete objects. However, a distinct runtime is
still necessary when testing the same algorithm on a differ-
ent concrete object — as is the case with Bob’s process.

Conditionals and Recursion: The Big Problems

To solve this puzzle for all possible inputs, Bob needs a
language that has either loops or recursion. In either case,
though, the idea is that a sufficiently powerful language needs
to be able (at runtime) to return back to a previous line of
code. At writetime, the programmer needs to be able to spec-
ify when such returns ought to occur. Such returns need to be
conditioned upon the data (so that loops can terminate). We
chose to implement recursion because of our background as
functional programmers.

Up to this point, Bob has performed actions that were exe-
cuted immediately. When he popped an element off of the
list, he saw the element become separated from the list in
his inventory immediately. If he were to add two numbers
together, he would see the result appear in his inventory im-
mediately. In other words, although he is writing code, the
system is also running his code as he writes it.

Let’s assume suppose Bob derives the following recursive so-
lution. Bob pops the first item off the input list [1,2,3] (as
he did before). See Figure 3.2. He selects the rest of the list
[2,3] and activates the black orb located at the bottom right of
the game world. See Figure 3.3. This orb represents making
a recursive call to the current function'. Ideally, the environ-
ment would now place into Bob’s inventory the result of the
recursive call. This is impossible (in general), however, be-
cause the function Bob is writing is not yet complete. But
the recursive call is being performed on the list [2,3], which
happens to be another one of the test cases provided before

"We chose recursion instead of loops because of our background
as functional programmers. Some kind of looping mechanic would
also have been completely viable.

Bob began. So the system knows the answer even though the
algorithm is not complete. This allows the number 5 to be
placed into Bob’s inventory.

He then takes the number 5 and uses the addition orb to add
the 5 to the number 1 — which he popped off earlier. This
produces the number 6. He selects the 6 and exits the level
by touching the white return orb. Here’s the code he unknow-
ingly generated:

a = pop (input)
b = sum(input)
c = add(a, b)
return c

The Orb Game will then switch to runtime, replaying the
avatar’s actions on the same input. Up until the point where
the avatar touches the recursion orb, the replay will be
straightforward. But when the avatar touches the recursion
orb while the list [2,3] is selected, a new instance of the game
will spawn (a new “stackframe” in programming language
terms) on top of the current instance. The replay will begin
anew with the list [2,3] in the inventory. The avatar will pop
off the 2, select the [3], and touch the recursion orb — spawn-
ing yet another instance of the game (another stackframe).
One more replay, and the avatar touches the recursion orb
with an empty list. This replay will fail on the pop action,
so the game revers back to writetime, allowing the player to
continue playing from that point on — with the empty list in
the inventory. The fact that the execution failed on the empty
list allows the system to construct the following code:

if (input == [1])

else
a = pop (input)
b = sum(lnput)
c = add(a, b)
return c

The correct thing to do in this base case is to activate the
“define constant” orb (the purple question mark orb shown in
the left on figure ??), which will prompt Bob for input. He
inputs the number 0, which is immediately placed into his
inventory. He then selects the 0 and returns, completing the
second branch of the conditional.

if (input == [1])
a=2=0
return a

else
a = pop (input)
b = sum(lnput)
c = add(a, b)
return c

Now the game switches back to runtime and continues by
popping off the topmost game instance (stackframe). The
zero from that instance is placed into the inventory in the in-
stance beneath. The replay now continues, adding the result
of that recursive call to the item popped from the list yielding
a3 (3 + 0 =3). Still replaying Bob’s actions from earlier,
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Figure 3. 1) Bob begins with the list [1,2,3]. 2) Bob triggers the pop ac-
tion, popping the first element from the list. 3) Bob triggers the recursion
orb; the oracle returns 5. 4) Bob triggers the add action twice, adding
1 and 5, producing 6, which he returns. Finally, 5) Bob must solve the
base case, which he does by activating the define constant orb, getting a
0, and returning.

this new 3 is selected and the avatar touches the return orb
— popping off another game instance (stackframe). The re-
turned 3 is carried into the instance beneath, where it is added
to the 2, yielding a 5 to be returned. And so on, until a 6 is
returned from the bottom-most game instance. This matches
the expected return value for the test case. So the system now
attempts to try the same sequence of actions on the other test
cases. See 4 for an image of the stacked game instances.

As we can see, the point of the visualized program execution
is two-fold:

e If Bob has correctly solved the puzzle, the replay gives
Bob an explanation for why his answer is right, as well
as (hopefully) some gratification in seeing his solution cor-
rectly handle all the test cases.

e If Bob has not correctly solved the puzzle, the replay is
analogous to a debugger — it visualizes every step of the
program execution at a speed conducive to human com-
prehension, allowing Bob to see where his solution breaks
down.

In this example, Bob has succeeded in producing the correct
general solution. Of course, we have elided much of Bob’s
learning curve. In our Evaluation section, we tackle the foun-
dational questions in this line of research: Does the experi-
ence feel like a game? And can non-coders really produce
correct general solutions to problems by playing this game?

EVALUATION

The goal of our experimental evaluation is to understand the
extent to which our PbG approach, and more specifically its
instantiation in The Orb Game, provides fully seamless in-
tegration of coding and gameplay — where “fully seamless”
means that players think they are playing game, and do not
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Figure 4. The runtime stack visualized as an actual stack of games dur-
ing execution. When the avatar triggers the return orb in the lower left,
the top-most level will be removed, and the currently selected items in
the inventory (the list [1]) will be returned to the next game in the stack.

realize they are coding. To this end, we recruited 12 subjects
from non-STEM majors at a local university and had them
solve various textbook-style problems dealing with linked-list
processing. We prescreened for subjects with no program-
ming experience. On further investigation, three of the sub-
jects turned out to have experience with programming, leav-
ing us with 9 subjects (1 man and 8 women). We did not tell
the users that the system was called “The Orb Game” — so as
to avoid priming them to think of it as a game.

We designed two sets of programming tasks: a set of training
tasks and a set of benchmark tasks. The training tasks were
intended to familiarize users with the interface —i.e. to mimic
the “training levels” often found in commercial games. The
benchmark tasks were intended to assess whether (after com-
pleting the training tasks) the users could solve more complex
problems without assistance. The training tasks were divided
into two groups: basic and advanced. The basic tasks were as
follows and can be categorized according to the various API
calls (represented by the orbs) necessary to complete the task:

o Add/Return. Add two numbers together and return the re-
sult.

e Pop/Add/Return. Pop two numbers off a list, add them to-
gether, and return the result.

e Pop/Add/Return. Pop three numbers off a list, add them
together, and return the result.

e Pop/Concat/Return. Pop the first two numbers off a list,
concatenate the first one back on, and return the result.

e Pop/Max/Return. Pop the first two numbers off of a list,
return the larger of the two.

e Pop/Constant/Add/Return. Pop the first number off of a
list, add 6 to it, and return the result.

The advanced training tasks were designed to demonstrate re-
cursion and the importance of producing a general solution
(i.e. one that works on all inputs):

e Max. Return the maximum element in the list.

e Sum. Return the sum of all elements in a list.



e Even/Odd. Return 1 if there are an odd number of items in
the list and O otherwise.

The benchmark tasks were as follows:

e Reverse. Reverse the order of list items. We designed this
benchmark to be isomorphic to sum and max — i.e. the
correct answer is to pop the first element off the input (let’s
call the result F), perform a recursive call (let’s call the
result R), and return the result of a binary operation on F
and R. It is different, though, in that the return type is a list
instead of an integer.

e Map +5. Return the input list, but with each element in-
cremented by 5. We chose this benchmark because it is in-
volves several different operations — obtaining a constant,
addition, recursion, and concatenation. The general case
is, therefore, quite complex (more complex than any of the
training tasks). The base case, however, is simple.

e Return last. Given a list as input, return the last element.
We chose this benchmark to assess subjects’ performance
when the game’s automatically-generated base case is not
correct. (The correct base case handles a list with a single
element and returns that element.)

All of the advanced training tasks and the performance bench-
marks are programs that operate on a single input — a linked
list. We provided test cases such that the oracle would re-
turn a correct answer for a recursive call on any sublist of the
1nput.

For each subject, we conducted a 90 minute session structured
as follows:

Basic training. The first 30 minutes was spent asking the sub-
ject to perform each of the basic training tasks. The subject
was encouraged to ask questions.

Advanced training. In the second 30-minute period, the re-
searcher conducting the experiment spent 10 minutes on each
of the 3 advanced training tasks. In each of these 10-minute
segments, the researcher first discussed the problem with the
subject. Then the user was permitted to take control of the
avatar and attempt a solution. Asking questions was permit-
ted and encouraged. Then the researcher took control of the
avatar and demonstrated the correct solution, pausing for fre-
quent Socratic interludes — i.e. asking the subject “What do
you think will happen when I do this?”” The researcher made
a point to articulate a common 4-step pattern in all three solu-
tions: 1) Reduce the input, 2) use the black orb (the recursion
orb) to obtain a solution for the reduced input, 3) figure out
how to use this solution to obtain a solution for the original
input, and 4) solve the base case.

Performance Benchmarks. In the final 30-minute period, the
subject was instructed not to ask questions, unless to clarify
the problem statements. The subject was given 10 minutes
to complete each of the performance benchmarks. The sub-
ject was allowed to make as many attempts as time permitted.
The 10-minute segment was ended early in the event that the
subject obtained the correct answer in less than 10 minutes.
The researcher recorded the time it took the subject to obtain

Reverse Map +5 Last

3 min, 3 tries 3 min, 4 tries 4 min, 2 tries

6 min, 3 tries 8 min, 2 tries 8 min, 3 tries

8min,4try 3 min, 2 tries  Fail, 2 tries

3min, 1 try 7 min, 2 tries  Fail, 3 tries

3 min, 1 try 10 min, 4 tries Fail, 2 tries

2min, 1 try 10 min, 6 tries Fail, 2 tries

2min, 1try 2 min, 1 try Fail, 2 tries

2 min, 3 tries Fail, 4 tries Fail, 2 tries

5 min, 2 try Fail 6, tries Fail, 3 tries
Figure 5. Seven of the subjects completed at least 2 benchmarks. All
subjects completed at least 1 benchmark. For those who completed the

benchmarks, the average times for completion were 3.8 minutes for the
first, 6.1 minutes for the second, and 6 minutes for the third.

a correct result, as well as the number of incorrect attempts
made beforehand.

The remaining time was spent on a short semi-structured exit
interview. Questions asked included: What did you find dif-
ficult? What was the most difficult puzzle? What if anything
would make the game more fun? What (in your own words)
does the black orb do?

Results

The results of each subject’s performance on each benchmark
are contained in the table in Figure 5. All of the subjects
solved at least one of the three puzzles.

The most solved benchmark was the reverse benchmark —
which all subjects were able to correctly complete. The least-
solved benchmark was the /ast benchmark, which was cor-
rectly completed by two subjects.

We believe the reverse benchmark was relatively simple be-
cause it was isomorphic to the max and sum training tasks.
The last benchmark was difficult due to the fact that the
automatically-generated base case was not the correct base
case. All subjects did correctly solve the general case for the
last benchmark, though. The two subjects who correctly saw
the need for a different base case first gave an incorrect solu-
tion, only correcting their solution after watching the in-game
execution.

Inventory. All users made use of the fact that inventory items
could be dragged around. They used this feature to organize
their data values into various groups while performing tasks.
Every subject used this feature on every benchmark task, in-
dicating that they found it useful.

In-game execution. The runtime environment was valuable
in all tasks in which players were not able to solve the puz-
zle correctly the first time (see the cells in Figure 5 in which
the subject had to try more than once). In these tasks, play-
ers would play, then watch the replay, then repeat the process.
Because these cycles resulted in a correct solution on so many
of the tasks, we can conclude that the game’s runtime envi-
ronment is critical to the code writing process.

We observed two pervasive incorrect strategies that pertain to
the game’s use of concrete values. Subjects had some initial



trouble grasping that they were supposed to produce a general
solution.

Deconstruct and reconstruct. All subjects, on at least one
benchmark, utilized a “deconstruct and reconstruct” strategy.
In other words, they would pop all items off of the input list,
perform the intended computation (e.g. find the sum), and
return the result — avoiding a recursive call altogether, and ul-
timately producing a non-general solution (one that doesn’t
work on a list with a different number of elements). Thus,
in spite of the prior training, subjects retained a strong pref-
erence for concrete solutions. This indicates that our game’s
next iteration should contain multiple training levels to help
acclimate the player to the process of producing a general so-
lution.

Building a constant. More than half of the subjects, during
the map+5 task, attempted to produce the constant 5 by pop-
ping numbers off the input list and adding them together to
construct a 5. This was in spite of the fact that an orb for pro-
ducing desired constants was provided. We suspect that this
unproductive strategy would not have arisen if we had pro-
vided more than one basic training task involving constants.
We plan to include this in our game’s next iteration.

For both of these strategies, the existence of the game’s run-
time visualizations helped students recognize and get past
their initial confusions, demonstrating the value of this fea-
ture.

Difficulties and confusions. During the interview, subjects
were asked what the most difficult puzzle was — to which all
but one named the even/odd puzzle. This was interesting be-
cause this puzzle was one of the training tasks, which the sub-
ject and the researcher solved in collaboration. The difficulty
was likely because the task was the only task that required 2
different base cases: 1) a base case in which the input is the
empty list and 2) a base case in which there is only one item
in the list. (The general case simply pops twice and returns
the result of a recursive call). This indicates that perhaps the
game should provide more support and training with regard
to base cases.

What does the black orb do? Two of the subjects said that it
reminded them of the movie Inception, whose plot features
dream worlds within dream worlds — which is indeed a man-
ifestation of recursion. Other perceptions of the black orb
focused on its functionality as an oracle: one subject said “It
lets you cheat”, and an other said “It’s like when Dumbledore
gave Harry Potter the snitch and it took him forever to figure
out what it meant.” The other subjects simply described its
mechanics in a more literal fashion.

Seamless integration. Most importantly, when asked during
the interview what sorts of things the system reminded them
of, all subjects mentioned some kind of game (Mario being
the most common). “Solving a puzzle” was also common.
Only one subject mentioned that it was like “getting the com-
puter to do stuff for you” — which perhaps indicates a more
code-like perception than a game-like one.

We can conclude from the above results that: 1) using fa-
miliar game mechanics (e.g. from platformer-type games)
did indeed make people feel that they were playing a plat-
former game; 2) difficulties were presented by the game’s
recursive nature, making the experience also feel like a puz-
zle game rather than the intended platform game; and 3) the
record/replay (writetime/runtime) mechanic greatly assisted
with producing general solutions, while having no negative
effects on perceptions of the system as a game.

Threats to Validity

A potential threat to our conclusion that The Orb Game was
not recognizable as a coding interface is that, perhaps by
recruiting non-coders, we recruited people who would have
lacked the ability to recognize that they were coding even if
they were presented with an obvious coding interface — like
Scratch or Python. The reason we think this is not the case,
though, is two-fold:

e We routinely run studies on non-coders (calling for partic-
ipants with “no coding experience”). These participants,
though they have never coded, overwhelmingly tend to
have an accurate general understanding of coding. They
know basically what coding is even if they haven’t done it.
And they do recognize code (even Scratch or Alice code)
when they see it.

e Much research has been done on the adoption of percep-
tions of coding by young people, showing that they form
perceptions about coding (and whether or not they could
ever be a coder) at an early age, often before high school
[8]. This research suggests that the basic ideas of coding
are something that even non-coders are exposed to from an
early age.

Furthermore, our subjects in this study expressed surprise and
even skepticism when told, at the end, that they were writing
code while playing the game.

RELATED WORK AND DISCUSSION

Programming by demonstration. One of our design decisions
was to allow the user to manipulate concrete values instead of
abstract values — a technique used in programming by demon-
stration systems. Early systems of this sort were were Pyg-
malion [3] and Tinker [9]. The motivation for these systems
is the same: Cognitively speaking, human beings seem to
understand concrete values (like 7) better than abstract ones
(like n). And when writing an algorithm like, say, the fac-
torial function, it can be easier for a person to demonstrate
how to obtain the factorial of 7 than it is to write the more
general factorial function. Often, the system can produce
the more general function from the demonstration. Although
some programming by demonstration systems are intended to
be educational, we know of no programming by demonstra-
tion systems that is designed to disguise itself as a game.

Coding education systems. Although gamification is not
found in programming by demonstration systems, it is com-
monly found in tools for educating novices about program-
ming. The Logo language began a long tradition of building
tools to make coding more accessible to those who don’t al-
ready know how to code. Game programming was an early



domain for Logo. Today, the Alice and Scratch environments
are commonly used to code games in introductory program-
ming classes. Other environments for children and/or novices
revolve around games — e.g. Kodu, CompetitiveSourcery [6],
and CodeSpells [5]. Many of these are tools for making
games, but not games themselves. However, even the exam-
ples that do try to integrate coding into gameplay do so by
relegating coding to a discrete interface mode.

By leveraging PbG (PbD plus mappings from coding to
gameplay operations), our system allows coding and play to
occur simultaneously. During writetime, gameplay and code
writing are seamlessly integrated. And during runtime, game-
replay and code execution are seamlessly integrated. And by
”seamlessly integrated”, we mean that they are literally the
same thing. This is a level of seamless integration between
coding and gameplay that has not been achieved by previous
coding tools for novices.

Situated as it is between two research traditions (“program-
ming by demonstration tools” and “novice coding tools”) our
system has at least two possible futures. The system can be
made more useful and/or more educational.

More useful. There is a term for games that have useful game-
play: they are “games with a purpose”, an idea pioneered by
Louis von Ahn [14]. Pipe Jam [4], for example, is a puzzle
game that tricks players into writing correctness proofs for
programs. The point of such games is to crowdsource useful
work to players. Given the results of our study (wherein cer-
tain tasks were found to be too difficult), some training levels
are needed. Furthermore, the game would need to be extend
to allow players to manipulate more powerful structures —e.g.
objects.

More educational. We did not attempt to make The Orb Game
particularly fun — and many of our subjects suggested that
they would have liked to see some traditional obstacles like
traps or multiplayer. That said, the history of the platformer
game genre is rife with mechanisms that could trivially be in-
cluded in our prototype. After making the game more fun, it
will also be important to perform logitudinal studies to dis-
cover whether the game (though fun) has real educational
value.

CONCLUSION

In education games research, seamless integration has been
empirically validated and called for repeatedly. We made it
our goal to integrate coding and gameplay so seamlessly that
players would not know they were writing code (a benchmark
we term “fully seamless”). The technical challenges of the
domain (i.e. mapping gameplay actions to code, represent-
ing runtime and writetime, incorporating recursion) can be
surmounted while preserving seamlessness. We did this by
building a PbG system, which merges gameplay with coding
in a programming by demonstration system that maps con-
crete player actions to code production. More specifically: 1)
Simple data transformations are mapped to platformer game
mechanics that have immediate effects on the data; 2) the
sequence of actions is generalized into code in the back-
ground; 3) The writetime/runtime distinction is mapped to

the play/replay game mechanic; 3) Recursion is represented
at writetime as an orb that returns an inventory value, and at
runtime as a stack of game replays; 4) Conditionals are rep-
resented as pattern matches on the inventory contents at the
beginning of a recursive call.

We now know that it is possible to get non-coders to write
algorithms without knowing it. Furthermore, such algorithms
work on all inputs, not just the test cases that the player is
given.
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