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Abstract

Automatically Proving the Correctness of Program Analyses and Transformations

Sorin Lerner

Chair of the Supervisory Committee:
Professor Craig Chambers
Computer Science and Engineering

In this dissertation, I describe a technique for automatically proving compiler optimiza-
tions sound, meaning that their transformations are always semantics-preserving. I first
present a domain-specific language, called Rhodium, for implementing optimizations using
local propagation and transformation rules that manipulate explicit dataflow facts. Then
I describe a technique for automatically proving the soundness of Rhodium optimizations.
The technique requires an automatic theorem prover to discharge a simple proof obligation
for each propagation and transformation rule.

I have written a variety of forward and backward intraprocedural dataflow optimizations
in Rhodium, including constant propagation and folding, branch folding, full and partial re-
dundancy elimination, full and partial dead assignment elimination, an intraprocedural ver-
sion of Andersen’s points-to analysis, arithmetic-invariant detection, loop-induction-variable
strength reduction, and redundant array load elimination. I implemented Rhodium’s
soundness-checking strategy using the Simplify theorem prover, and I have used this im-
plementation to automatically prove that the Rhodium optimizations I wrote were sound.
I implemented a prototype execution engine for Rhodium so that Rhodium optimizations
can be directly executed. I also developed a way of interpreting Rhodium optimizations in
both flow-sensitive and -insensitive ways, and of applying them interprocedurally given a

separate context-sensitivity strategy, all while retaining soundness.
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Chapter 1

INTRODUCTION

1.1 Correctness of Program Analysis and Transformation Tools

The reliability of any software program depends on the reliability of all the tools that pro-
cess it, including compilers, static and dynamic checkers, and source-to-source translators:
a correct program compiled incorrectly is effectively incorrect; a guarantee of memory safety
(no buffer overruns) or security safety (no high-security information flows to low-security
variables), if provided by a buggy checker, is in fact no guarantee at all. Unfortunately, pro-
gram analysis and transformation tools (PATs) can be difficult to develop, even for experts
in the field of program analysis. It may take years before a new compiler is stable enough
for programmers to trust it, and even then the compiler will probably still have numer-
ous bugs. Aside from having an impact on software reliability in general, the difficulty of
writing correct PATs also hinders the development of new languages and new architectures,
and it discourages end programmers from extending PATs with domain-specific checkers or
optimizers.

One of the most error-prone parts of a PAT are the analyses and transformations them-
selves. Each new program processed by a PAT potentially triggers new patterns of interac-
tions among its analyses and transformations, and it is difficult to cover all these interactions
in test suites. Furthermore, it is becoming less and less feasible to increase the reliability of
a PAT by simply disabling most of its analyses and transformations. With the widespread
adoption of systems whose good performance depends heavily on compiler optimizations —
for example just-in-time compilers and higher-level languages like C# [50] and Java [8] —
turning off the optimizer is no longer a reasonable option. With more and more systems
alming to provide strong guarantees, it is no longer possible to disable the static checkers

that provide these very guarantees.



The research presented in this dissertation is aimed at making it easier to build reliable
program analyses and transformations by providing the right abstractions for implementing
them, while at the same time providing strong theoretical guarantees about their correct-
ness. This dissertation focuses on the most commonly used PAT, namely the compiler, and
the analyses and transformations found in a compiler, namely code optimizations. However,
the techniques presented in this dissertation are applicable to program analyses and trans-
formations in general, regardless of the PAT they are used in. Furthermore, this dissertation
focuses on a particular aspect of correctness, namely soundness. In general, a soundness
guarantee says that nothing bad will happen, whereas a correctness guarantee says that the
implementation does what it should do. In the context of compilers, guaranteeing correct-
ness would require having some sort of high-level specification stating what optimizations
are meant to do, and then checking the implementation against these specifications. My
work focuses on the simpler task of checking that compiler optimizations are sound, meaning

that their transformations are always semantics-preserving.
1.2 Previous Approaches

The previously known techniques for improving the reliability of compilers can be catego-
rized into three broad areas: testing, translation validation, and human-assisted soundness
proofs. This section discusses the advantages and disadvantages of these three techniques,
setting the stage for the next section, which describes the solution presented in this disser-
tation.

The simplest and most commonly used technique for gaining confidence in the correctness
of a compiler is testing. Testing consists of running the compiler on various input programs
and checking that the optimized version of each program produces correct results on various
inputs. This method is simple and easy to understand, and it can be applied to any
optimization. Testing can find many bugs, thus increasing one’s confidence in the correctness
of the compiler. However, testing cannot provide any guarantees: it does not guarantee the
absence of bugs in the compiler, nor does it even guarantee that any particular optimized
program is compiled correctly. It can also be tedious to assemble an extensive test suite of

programs and program inputs with resulting program outputs.



Translation validation [91, 77, 126, 125, 45] improves on the testing approach by au-
tomatically checking, during compilation, whether or not the optimized version of an in-
put program is semantically equivalent to the original program. Translation validation can
therefore guarantee the soundness of certain compiler runs, but the compiler itself is still not
guaranteed to be bug-free: there may still exist programs for which the compiler produces
incorrect output, and there is little recourse for a programmer if a compilation cannot be
validated. Furthermore, to make translation validation effective, one usually has to narrow
the scope of optimizations being considered, thus reducing the generality of the approach.
For example, until recently, only structure-preserving transformations could be validated
effectively [77, 45]. Finally, since the validation is done during compilation, translation

validation can also have a substantial impact on the time to run the compiler.

The best solution would be to prove the compiler sound, meaning that for any input
program, the compiler always produces an equivalent output program. Optimizations, and
sometimes even complete compilers, have been proven sound by hand [29, 30, 70, 68, 48,
83, 31, 61, 60, 108, 61, 15], or using human-assisted interactive theorem provers [124, 21, 1].
However, manually proving large parts of a compiler sound requires a lot of effort and
theoretical skill on the part of the compiler writer. In addition, these proofs are usually
done for abstract descriptions of optimizations, and bugs may still arise when the algorithms

are implemented from the specification.

These three broad research areas of compiler correctness can therefore be summarized as
follows: the testing approach is fully automated once test inputs have been generated, and
it can be applied to any optimization, but it provides no soundness guarantees; translation
validation is also fully automated, and in addition, it provides a per-compilation guar-
antee of soundness, but it is effective only on certain kinds of optimizations; and finally,
human-assisted proofs are not automated, requiring substantial human effort, but they are
very general, and they provide the best possible guarantee, a once-and-for-all guarantee of
soundness. Table 1.1 summarizes the characteristics of these three broad research areas,

and Figure 1.1 shows a pictorial representation of two dimensions of Table 1.1.



Table 1.1: The three previous approaches to compiler correctness

Automation Soundness Generality
guarantee
Testing running tests can be | none applicable to any optimiza-
fully automated, but tion

generating test inputs
and outputs is hard to

automate
Translation fully automated per- is effective only on certain
validation compilation kinds of optimizations
Human- semi-automated, re- | once and for all | applicable to any optimiza-
assisted proofs | quiring a substantial tion, but the more compli-
amount of human cated the optimization is,
effort the more human effort is re-
quired
Goal of this fully automated once and for all | as general as possible,
dissertation given  the  automation

and soundness guarantee
requirements

1.3 Statement of the Thesis

My thesis is that it is possible to provide once-and-for-all guarantees of soundness in a fully
automated way for a variety of program analyses and transformations, thus combining the
benefits of translation wvalidation and human-assisted soundness proofs. Figure 1.1 shows
pictorially where my thesis lies in the space of previous work. Unfortunately, reasoning
automatically about the soundness of program analyses and transformations is hard. The
proofs require induction, which is hard to automate in general, and the theorems to be
proven contain alternating quantifiers, a pattern that is difficult to handle automatically.
The difficulties in overcoming these problems have caused the majority of previous work
on compiler soundness to either give up on full automation, resulting in human-assisted

soundness proofs, or give up on once-and-for-all guarantees, resulting in translation vali-



Automation 4

all q translation Goal of this
ully automate validation dissertation

significant amount
of human effort

human-assisted
proofs

>

none per—compilation once and Soundness
for all
Guarantee

Figure 1.1: Pictorial representation of two dimensions of the space of previous work

dation. This dissertation shows that once-and-for-all guarantees of soundness can in fact
be attained automatically. The key enabling idea is to use a domain-specific language for
implementing compiler optimizations. The stylized form of this domain-specific language
then makes it feasible to automatically check that optimizations are sound, meaning that
their transformations are always semantics-preserving.

I therefore support my thesis in this dissertation as follows:

e [ present a domain specific language called Rhodium for implementing program anal-
yses and transformations over C-like programs [64, 65]. Aside from reducing the
potential for errors by making program analyses and transformations easier to write
and maintain, the restricted domain of Rhodium makes it amenable to rigorous static
checking that would be impossible otherwise. In particular, I have implemented a
tool called a soundness checker that leverages the stylized form of Rhodium analyses
and transformations to check them for soundness automatically, before they are even
run once. Once checked for soundness, Rhodium analyses and transformations are

executed in the compiler by an execution engine that is trusted to be correct.

e [ present a variety of program analyses and transformations that I implemented in

Rhodium, and that I checked for soundness automatically using my soundness checker.



These include constant propagation and folding, copy propagation, common subex-
pression elimination, branch folding, partial redundancy elimination, partial dead as-
signment elimination, loop-invariant code motion, loop-induction-variable strength
reduction, a flow-sensitive version of Andersen’s points-to analysis [6] with heap sum-
maries, arithmetic invariant detection, constant propagation through array elements,

redundant array load elimination, and integer range analysis.
1.4 Contributions

The main contribution of this dissertation is the design of a language for writing pro-
gram analyses and transformations that can be checked for soundness automatically. The
challenge in designing such a language stems from the tension between expressiveness and
checkability. The more expressive the language is, the more difficult it is to automatically
reason about the soundness of analyses and transformations written in that language. I
address this challenge in the Rhodium language by incorporating a variety of novel features
that increase expressiveness, while still retaining automated soundness checking. The most

important of these features are as follows:

e Locally checked rules. In Rhodium, programmers declare dataflow facts that rep-
resent useful information about a program, and then they write local rules for prop-
agating these facts across statements and for using these facts to trigger program
transformations. These rules are akin to regular dataflow functions with which com-
piler writers are already familiar [3, 74, 7, 82|, and as a result they provide a natural
and easy way of expressing complex optimizations. However, despite their expres-
siveness, the stylized form of these rules makes them amenable to fully automated
soundness checking. To check an analysis or transformation for soundness, the pro-
grammer must provide a semantic meaning for each dataflow fact, in the form of
a predicate over program states. The Rhodium system then asks the Simplify [36]
automatic theorem prover to discharge a local soundness lemma for each rule, using
the meanings of the facts manipulated by the rules and the concrete semantics of the

program’s statements. I proved, once by hand, that for any Rhodium analysis or trans-



formation, if the local soundness lemmas hold, then the analysis or transformation is
globally sound. This split of the proof task between the human and the automatic
theorem prover is critical. The manual proof takes care of the necessary induction over
program execution traces, and it takes care of alternating quantifiers, both of which
would be difficult to automate. As a result, the automatic theorem prover only needs

to reason about noninductive lemmas that mention only one statement at a time.

Soundness vs. profitability. In many compiler optimizations, the condition that
specifies when a transformation is legal can be separated from the condition that
specifies when a transformation is profitable. Rhodium provides profitability facts for
implementing arbitrarily complex profitability decisions without affecting the sound-
ness of an optimization. As a result, the profitability part of an optimization does
not need to be reasoned about and can be written in a general-purpose language,
thereby removing any limitations on its expressiveness. This way of factoring out the
profitability part of an optimization from the rest of the optimization is critical for
automatically proving the soundness of complex optimizations. Without profitabil-
ity facts, the extra complexity added to the Rhodium rules to express profitability

information would prevent automated soundness reasoning.

Dynamic semantics extensions. Rhodium allows the programmer to define “vir-
tual” extensions to the dynamic semantics of the intermediate language. These exten-
sions can compute properties of program execution traces, for example, the statement
at which each memory location was allocated. These extensions can then be referenced
in the meanings of dataflow facts, for instance in a points-to analysis with allocation-
site heap summaries. The net effect of dynamic semantics extensions is that they
allow meanings that would otherwise mention full traces to mention only the current
program state. As a result, they make the theorem proving task simpler, and thereby

allow for a wider class of optimizations to be proven sound automatically.



1.5 Outline

The next chapter of this dissertation, Chapter 2, provides an overview of the Rhodium sys-
tem, and is structured exactly along the lines of the above contributions. In particular, Sec-
tion 2.1 presents the Rhodium language using a few examples, and then the following three
sections explain the above contributions in more detail: Section 2.2 presents an overview
of the Rhodium proof strategy, Section 2.3 shows how profitability facts can be used to
separate soundness from profitability, and finally Section 2.4 presents dynamic semantics
extensions. The chapter concludes with a section discussing termination of Rhodium opti-
mizations, an important but less fundamental aspect of the Rhodium system. Chapter 2
keeps formal details to a minimum and tries to provide intuitive explanations.

The succeeding four chapters describe in greater depth the ideas already presented in
Chapter 2. These chapters, which are more formal than Chapter 2, constitute the main tech-
nical content of this dissertation. In particular, Chapter 3 describes Rhodium IL programs,
which are the programs that Rhodium optimizations manipulate. Chapter 4 presents a
common theoretical framework for defining and proving the soundness of program analyses
and transformations over Rhodium IL programs. Chapters 5 and 6 then use this framework
to formalize the semantics of forward and backward Rhodium optimizations, and to show
how Rhodium optimizations are checked for soundness automatically.

Chapter 7 then describes how to execute Rhodium optimizations. It describes an in-
traprocedural flow-sensitive execution engine for Rhodium optimizations, and it also shows
how Rhodium analyses can be run in a flow-insensitive and/or interprocedural mode.

Chapter 8 evaluates the Rhodium system along several dimensions. Chapter 9 describes

related work. Chapter 10 presents several directions for future work, and concludes.



Chapter 2

OVERVIEW OF RHODIUM

2.1 Rhodium by example

2.1.1 Constant propagation in Rhodium

Rhodium optimizations run over a C-like intermediate language (IL) with functions, recur-
sion, pointers to dynamically allocated memory and to local variables, and arrays. The
optimizations manipulate a control-flow graph (CFG) representation of the IL program,
with each node representing a simple register-transfer-level statement.

The purpose of an optimization is to compute information about an IL program and
then to use this information to perform optimizing transformations. Omne can therefore
identify three main steps in writing an optimization: (1) defining how to represent the
desired information; (2) defining how to compute this information; and (3) defining how to
use this information to perform transformations. This section illustrates these three steps in
Rhodium using a simple constant propagation example, shown in Figure 2.1.1 The purpose
of this optimization is to determine which variables contain compile-time constants and to

replace all uses of these variables with their constant values.

Step 1: Dataflow fact declarations

Information about an IL program is encoded in Rhodium by means of dataflow facts, which
are user-defined function symbols (in the logic sense) applied to a set of terms, for example
hasConstValue(x,5) or exprlsAvailable(x,a + b). During execution of a Rhodium optimiza-
tion, each edge in the CFG will be annotated with a set of these facts. The Rhodium
programmer defines what kind of facts are going to be computed by means of fact schemas.
A fact schema is a parametrized dataflow fact (a pattern, in essence) that can be instanti-

ated to create actual dataflow facts. For example, the constant propagation optimization

!For the complete syntax of the Rhodium language, see Figures 5.1, 5.2, 5.3 and 3.1.



10

define forward edge fact hasConstValue(X: Var, C:Const)
with meaning 7n(X) =C

decl X:Var, Y:Var, C:Const

if currStmt = [X := C]
then hasConstValue(X, C)Qout

if currStmt =[Y = E] A
hasConstValue(X, C)Qin A
X4Y

then hasConstValue(X, C)Qout

© XN e W e

—
e

if currStmt =[Y = X] A
hasConstValue(X, C)Qin
then transform to Y :=C

[
DN =

Figure 2.1: A simple constant propagation optimization in Rhodium

of Figure 2.1 contains a fact-schema declaration on line 1. This declaration states that the
programmer wants to compute facts of the form hasConstValue(X,C), where X ranges over
variables in the IL program being optimized, and C' ranges over constants. Intuitively, the
presence of a hasConstValue(X,C) fact on an edge in the CFG is meant to represent the
fact that the variable X has the constant value C'. This intuition is made precise with the
meaning declaration on line 2. The meaning of a fact schema defines what the programmer
intended instances of that fact schema to capture about the run-time behavior of the IL
program. The details of this meaning can be ignored for now, as they will be covered in
Section 2.2. Meanings are not used to execute the Rhodium optimizations; they are only

used to check them for soundness.

Step 2: Propagation rules

Programmers define how to compute dataflow facts in Rhodium using propagation rules,
which are a stylized way of writing traditional flow functions. Propagation rules in Rhodium
simply indicate how facts are propagated across CFG nodes. For example, the rule on

lines 6-9 of Figure 2.1 defines a condition for preserving a hasConstValue fact across sim-
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ple assignments: if a fact hasConstValue(X,C) appears on the incoming CFG edge of an
assignment Y := F, and the assignment does not modify X (that is, X # Y'), then the
dataflow fact hasConstValue(X,C) should appear on the outgoing edge of the assignment.

The part of a rule immediately after the “if” is called the antecedent and the part after
the “then” is the consequent. Each propagation rule is interpreted within the context of a
CFG node. The special variable currStmt refers to the IL statement at the current CFG
node. Dataflow facts are followed by @ signs, with the name after the @ sign indicating the
edge on which the fact appears. For example, hasConstValue(X,C')@Qin is true if the incom-
ing CFG edge of the current node is annotated with a fact of the form hasConstValue(X, C).

The semantics of a propagation rule on a CFG is as follows: for each substitution of
the rule’s free variables that make the antecedent valid at some node in the CFG, the
fact in the consequent is propagated. For the rule described above, a fact of the form
hasConstValue(X, C') will be propagated on the outgoing edge of a node for each substitution
of X and C with variables and constants that makes the antecedent valid.

While the rule on lines 6-9 of Figure 2.1 specifies how to preserve hasConstValue facts,
the rule on lines 4-5 specifies how to introduce them in the first place. That rule says that
the outgoing CFG edge of a statement of the form X := C should be annotated with a fact
of the form hasConstValue(X,C').

A set of propagation rules together implicitly define a dataflow analysis A whose domain
D is the powerset lattice of all dataflow facts: (D,U,M,C, T, L) = (278 N U, D, 0, Facts),
where Fuacts is the set of all fact-schema instances. Each edge in the CFG is therefore
annotated with a set of dataflow facts, where bigger sets are more precise than smaller

2 The analysis starts with all edges in the CFG set to L, except for the input edge,

sets.
which is initialized to T. The flow function F' of the analysis is defined by the propagation
rules: given a node and a set of incoming dataflow facts, F' returns the set of all dataflow
facts propagated by any of the individual rules.

The solution of the induced analysis A is the least fixed point of the standard set of

dataflow equations generated from F. Although the two rules in Figure 2.1 propagate

2] use the abstract interpretation convention that L is the most optimistic information, and T is the most
conservative information.
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facts that are instances of the same fact schema, different rules can propagate instances of

different fact schemas, and the fixed point is computed over all fact schemas simultaneously.

Step 3: Transformation rules

Rhodium propagation rules are used to define dataflow analyses. The information com-
puted by these analyses can then be used in transformation rules to optimize IL programs.
A transformation rule describes the conditions under which a node in the CFG can be re-
placed by a new node without changing the behavior of the program. As an example, the
transformation rule on lines 10-12 of Figure 2.1 states that a statement Y := X should be
transformed to Y := C' if it is known that X has the constant value C.

Together, the propagation and transformation rules of Figure 2.1 define a simple constant
propagation optimization. The propagation rules compute which variables have constants,

and the transformation rule uses this information to simplify variables to constants.

2.1.2 Node facts

Each one of the propagation rules from Figure 2.1 applied to only one statement kind at a
time. Unfortunately, this coding style leads to many repetitive rules. Consider, for example,

the propagation rule from lines 6-9 of Figure 2.1:

if currStmt =[Y = E] A
hasConstValue(X, C)Qin A
X4Y

then hasConstValue(X, C)Qout

One would have to write a similar rule for skip statements:

if currStmt = [skip] A
hasConstValue (X, C)Qin A
then hasConstValue(X, C)Qout

And one for branch nodes in the CFG (which are represented by if statements):
if currStmt = [if A goto Ly else Lo] A

hasConstValue(X, C)Qin A
then hasConstValue(X, C)Qout
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In fact, one would have to write a similar rule for every statement form that does not
modify X. Ideally, however, the programmer would have to write only one such preservation
rule, which abstracts over the various statement kinds. This rule would simply state that
hasConstValue(X, C) is preserved through any statement that does not modify X. Unfor-
tunately, the Rhodium facts presented so far have all been edge facts, capturing information
about edges in the CFG, not statements. In order to facilitate writing rules that apply to
multiple statement kinds, Rhodium provides node facts to capture properties of statements.
An an example, the programmer can define a node-fact schema mustNotDef (X), which cap-
tures the fact that a node does not modify X. The preservation rule for hasConstValue

would then become:

if hasConstValue(X, C)Qin A mustNotDef (X)
then hasConstValue(X, C)Qout

Node facts can easily be distinguished from edge facts in a rule because node facts do not
have @ signs following them.

Programmers define node-fact schemas in Rhodium by providing a predicate over a state-
ment, referred to in the predicate’s body using the distinguished variable currStmt. Fig-
ure 2.2 shows the definition of two node-fact schemas: stmt and mustNotDef. The stmt(S)
fact schema simply says that the statement at the current node is S. The mustNotDef (Y")
fact schema is slightly more complicated, as it performs a case analysis on the current state-
ment: mustNotDef(Y) holds at a node if the current statement is a declaration of or an
assignment to a variable different from Y (the statement decl X[I] declares an array X of
size I); mustNotDef(Y') does not hold for pointer stores (since the intermediate language
allows taking the address of a local variable) or procedure calls (since the procedure may
be passed pointers from which the address of Y is reachable); finally, it holds for all other
statement forms (namely, conditionals and skip — see Figure 3.1 for the complete syntax of
the Rhodium IL). The “case” predicate is a convenience that provides a form of pattern
matching, but it is easily desugared into an ordinary logical expression. Figure 2.3 shows

the Rhodium code for constant propagation, this time taking advantage of node facts. Not
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1. define node fact stmt(S:Stmt) = currStmt = S
2. define node fact mustNotDef(Y:Var) =

3. case currStmt of

4. decl X B X#Y

5. decl X[I] & X#Y

6. X :=F B X#Y

7. xX =7 B false

8. X:=P(Z) = false

9. else B true

10. endcase

Figure 2.2: Node facts in Rhodium

only is the code that uses node facts easier to understand, but it also defines a version
of constant propagation that is more complete than the one from Figure 2.3, with little

additional programming effort.

2.1.8 Standalone analyses

The propagation rules that we have seen so far were used to compute facts for the purpose
of triggering transformations. Analyses can also be written to compute facts that will be
useful in writing other propagation rules. An example of such a standalone analysis is pointer
analysis, which determines what variables point to what other variables. This information
is often useful in defining propagation rules. For example, on line 7 of Figure 2.2, the
definition of mustNotDef could be made less conservative if only we knew that X did not
point to Y.

Figure 2.4 shows a pointer analysis in Rhodium that computes exactly this kind of
information: it determines when a variable does not point to another. Because Rhodium’s
strategy for automated soundness checking is geared toward must analyses, the pointer
information in Figure 2.4 is encoded using the must-not-point-to relation instead of the
more traditional may-point-to relation. Programmers can recover the may-point-to relation
using virtual dataflow facts, which are used in Rhodium to define shorthands for boolean

combinations of other facts. This facility allows a mayPointTo(X,Y") fact to be defined as
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define forward edge fact hasConstValue(X: Var, C:Const)
with meaning 7n(X) =C

decl X:Var, Y:Var, C:Const
if stmt(X :=C)
then hasConstValue(X, C)Qout

if hasConstValue(X, C)Qin A mustNotDef (X)
then hasConstValue(X, C)Qout

if stmt(X :=Y) A hasConstValue(Y, C)Qin
then transform to X :=C

© o N> ot W D

Figure 2.3: Constant propagation using node facts

—mustNotPointTo(X,Y), as shown on lines 5-6 of Figure 2.4.

Negation is provided in Rhodium only as a convenience. After all the virtual facts
have been expanded out, and negation has been pushed to the inside (using DeMorgan’s
law) through conjunctions, disjunctions and quantifiers, all negation on edge facts are re-
quired to cancel out. The absence of negated edge facts guarantees the monotonicity of
the implicitly defined flow function F', as further discussed in Chapter 5. Although dis-
allowing negated edge facts sounds restrictive, it actually corresponds to a common usage
pattern. Because Rhodium facts are all must facts, the absence of a fact does not pro-
vide any information — only its presence does. As a result, I never found the need to
use any negated edge facts, except as a notational convenience. For example, in analyses
that use mayPointTo(X,Y), it is always the lack of possible points-to information, i.e.,
—mayPointTo(X,Y), that enables more-precise analysis or transformation, which when ex-
panded yields mustNotPointTo(X,Y).

The rules in Figure 2.4 range from very simple to fairly complex. The first two rules
are the analogues of the introduction rule and the preservation rule from constant prop-
agation. In particular, the rule on lines 89 specifies how to introduce mustNotPointTo
facts: it says that the outgoing CFG edge of a statement X := &Z should be annotated
with all facts of the form mustNotPointTo(X,Y), where Y and Z are distinct variables.
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define forward edge fact mustNotPointTo(X: Var, Y:Var)
with meaning 7(X) # n(&Y)

define forward edge fact mustPointToSomeVar(X: Var)
with meaning 37 : Var . n(X) = n(&2)

define virtual edge fact
mayPointTo(X: Var, Y:Var) & =mustNotPointTo(X,Y)

decl X:Var, Y:Var, Z:Var, A:Var, B:Var

if stmt(X = &Z)AY £ Z
then mustNotPointTo(X,Y )Qout

if mustNotPointTo(X,Y )Qin A mustNotDef (X)
then mustNotPointTo(X,Y )Qout

if stmt(X := A) A mustNotPointTo(A,Y )Qin
then mustNotPointTo(X,Y )Qout

if stmt(xA := B) A
mustPointTo(A, X)Qin A
mustNotPointTo(B,Y )Qin

then mustNotPointTo(X,Y )Qout

if stmt(xA := B) A
mustNotPointTo(X,Y )Qin A
mustNotPointTo(B,Y )Qin

then mustNotPointTo(X,Y )Qout

if stmt(X :=xA) A
mustPointToSome Var(A)Qin A
YV B:Var . mayPointTo(A, B)Qin =
mustNotPointTo(B,Y )Qin
then mustNotPointTo(X,Y )Qout

Figure 2.4: Pointer analysis in Rhodium
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And the rule on lines 10-11 specifies how to preserve mustNotPointTo facts: if the fact
mustNotPointTo(X,Y) appears on the incoming CFG edge of a node n, and n does not
modify X, then the dataflow fact mustNotPointTo(X,Y ') should appear on the outgoing
edge of n.

The rule on lines 12-13 shows how to propagate pointer information through simple
assignments. The outgoing information, mustNotPointTo(X,Y), is a different instantiation
of the mustNotPointTo fact schema than the incoming information, mustNotPointTo(A,Y").
This way of stringing together different dataflow facts allows the programmer to express
complicated global conditions over the entire CFG, using only simple local propagation
rules.

The rule on lines 14-17 shows how to propagate information through pointer stores. The
mustPointTo(A, X) fact, computed by rules not shown here, says that A definitely points
to X. This rule shows how instances of different fact schemas can be mixed and matched
in the antecedent to create complicated conditions for triggering the propagation of a new
fact.

The above rule for pointer stores performs a strong update, where it is known exactly
what A points to. It is also possible to write a weak-update rule for pointer stores, as
shown on lines 18-21. The intuition behind this rule is as follows: if A points to X,
then the assignment is storing B in X, in which case mustNotPointTo(B,Y )Qin guar-
antees mustNotPointTo(X,Y )Qout; on the other hand, if A does not point to X, then
the assignment does not modify X, in which case mustNotPointTo(X,Y )@Qin guarantees
mustNotPointTo(X,Y )Qout.

Finally, lines 22-26 show a rule for propagating pointer information through pointer
loads. This rule illustrates some of the additional logical connectives available in the an-
tecedent, for example universal quantifiers and implication. In general, antecedents are
expressed in an executable subset of first-order logic, in which quantifiers range over do-
mains that are known at execution time to be finite and small enough to iterate over. For
example, a quantifier ranging over the infinite set of integers, or the finite-but-too-large
set of 32-bit integers, would not be allowed, whereas a quantifier ranging over variables in

the program being compiled would be allowed (see Section 2.5.1 for more details regarding
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define backward edge fact dead(X: Var)
with meaning 7;/X =ny/X

decl X:Var, Y:Var, E:Expr

if stmt(X := E) A mustNotUse(X)
then dead(X)Qin

if stmt(return Y)AX #Y
then dead(X)Qin

if dead(X)Qout A mustNotUse(X)
then dead(X)Qin

if stmt(X := E) A dead(X)Qout
then transform to skip

L X NS gt W=

_ =
— O

Figure 2.5: Dead assignment elimination in Rhodium

termination of rules). The mustPointToSomeVar(A) fact, whose rules are not shown here,
says that A must point to some variable (and therefore does not point to the heap). The rule
as a whole says that X does not point to Y after a statement X := %A if all the variables

in the may-point-to set of A do not point to Y.3

As a whole, the rules from Figure 2.4 show how a Rhodium analysis can easily be
extended by simply writing new propagation rules. Starting with a basic pointer analysis,
comprised of only the introduction and preservation rules, and extending it step by step
with additional rules, we have now expressed in Rhodium a flow-sensitive intraprocedural
version of Andersen’s pointer analysis [6]. Furthermore, because each rule can be written
and reasoned about independently, a novice programmer can easily extend this analysis, by
adding rules to cover more cases, without having to understand the workings of existing

rules.
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2.1.4 Backward optimizations

All the rules presented so far have been forward: the antecedent refers only to a node’s in-
coming CFG edge and the consequent refers only to a node’s outgoing CFG edge. Rhodium
also supports backward rules, where the antecedent refers only to the out edge and the con-
sequent refers only to the in edge. Figure 2.5 shows an example of a backward optimization
in Rhodium, namely dead assignment elimination. The goal of dead assignment elimination
is to remove assignments to dead variables, which are variables that are not going to be used
downstream of the assignment. The “deadness” of a variable X is encoded in Rhodium with
a dead(X) fact schema, shown on line 1. The meaning of dead(X) on line 2 can be ignored
for now — it will be explained in Section 6.2.3, along with the notation n;/X = ny/X. The
first rule (on lines 4-5) says that a variable X is dead right before an assignment to X, as
long as the right-hand side of assignment does not use X. The second rule (on lines 6-7)
says that a variable X is dead right before a return statement, as long as the returned vari-
able is different from X. The third rule (on lines 8-9) preserves the dead(X) fact backwards
through any statement that does not use X. Finally, the last rule (on lines 10-11) performs
the actual transformation, removing any assignment to a dead variable. Statement removal
is expressed in Rhodium by replacement with a skip statement. The execution engine for
Rhodium optimizations does not actually insert such skips.

Although Rhodium supports both forward and backward rules, it does not support bi-
directional rules, in which the antecedent refers to both incoming and outgoing edge facts.
Furthermore, Rhodium does not support bi-directional analyses, in which forward rules and
backward rules interact: all forward rules are run together, and all backward rules are run

together, but the forward rules and the backward rules cannot run simultaneously.

2.1.5 Indexed edge names

The edge names presented so far have been in and out. Some CFG nodes, however, have

more than one incoming/outgoing edge. For example, a branch statement has two outgoing

3Note that, after expanding a = b to —a V b, and mayPointTo(X,Y) to ~mustNotPointTo(X,Y), the
inner quantifier becomes VB : Var . mustNotPointTo(A, B)Qin V mustNotPointTo(B,Y )Qin, which does
not contain any negated edge facts.
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define forward edge fact leq(X:Ezpr, Y:Ezpr)
with meaning n(X) < n(Y)

define forward edge fact gt(X:Expr, Y:Expr)
with meaning 7(X) > n(Y)

decl X:Expr, Y:Expr, Li:Label, Lo:Label

if stmt(if X <= Y then goto L else Lg)
then leq(X,Y)Qout|0]

if stmt(if X <= Y then goto L else Lg)
then ¢t(X,Y)Qout[1]

© X e Gtk w =

Figure 2.6: Example of indexed edge names

edges, and a merge node has two incoming edges. In such cases, Rhodium programmers
can use edge indices to indicate exactly what edge they are referring to: in[i] refers to the
it" CFG input edge, and out[i] refers to the i® CFG output edge. For example, Figure 2.6
shows some Rhodium code that uses edge indices to propagate different facts along the two
outgoing edges of a branch. The rule on lines 67 propagates leq(X,Y") on the true branch
of if X <= Y then goto L else Ly, whereas the rule on lines 8-9 propagates gt(X,Y)
on the false branch.

Rhodium provides some syntactic sugar that can make the code from Figure 2.6 easier to
read and write. First, out[true] and out[false] are interpreted as out[0] and out[1]. Second,
Rhodium supports rules of the form if ¢ then fi(...)Qe; A fa(...)Qea A ... A fr(...)Qe,.
Such a rule gets desugared into n rules, the i*" of which is if 1) then f;(...)@e;. Using these

syntactic sugars, the rules on lines 6-9 of Figure 2.6 can then be written as:
if stmt(if X <= Y then goto L else Lg)

then leq(X,Y)Qout[true] A gt(X,Y)Qout][false]

Indexed edge names can also be used for the in edge. The only statement in the Rhodium

intermediate language that has more than one input edge is the merge statement, which has
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two input edges. This statement is used at merge points in the CFG of the program being
optimized. By default, the flow function for merge statements returns the intersection of
the two incoming sets of dataflow facts, but programmers can override this default behavior
by writing propagation rules for the merge statement, using in[0] and in[1] to refer to the
two incoming edges. More details regarding user-defined merges, including examples, can
be found in Section 2.5.3.

With the more general setting of indexed edge names in mind, there are several possible
choices for defining what the unindexed in and out mean. The simplest possibility is to
have in and out be syntactic sugar for in[0] and out[0]. This approach is appealing because
of its simplicity, but it interacts poorly with rules that abstract over many statement kinds.

In particular, consider the following rule from constant propagation:

if hasConstValue(X, C)Qin A mustNotDef (X)
then hasConstValue(X, C)Qout

If out were syntactic sugar for out[0], then this rule would only propagate to the 0" outgoing
CFG edge, which, in the case of branch statements, would mean that hasConstValue(X, C')
is only propagated to the true side of the branch, not the false side. To propagate

hasConstValue(X, C) on the false side as well, one would have to write the additional rule:

if stmt(if X <= Y then goto L else Ls) A hasConstValue(X,C)Qin
then hasConstValue(X, C)Qout|[false]

This asymmetry arises from the fact that desugaring out to out[0] is inherently asymmetri-
cal, favoring the 0" edge over the 15! edge. The semantics of in and out used in the Rhodium
system avoids this asymmetry. In particular, for forward rules, f@Qout indicates that f is
propagated on each outgoing edge, and f@in means that f appears on all incoming edges;
and for backward rules, f@Qin indicates the f is propagated on each incoming edge, and
fQ@out indicates that f appears on all outgoing edges. This allows the programmer to write
rules that abstract over statement kinds having a varying number of incoming/outgoing
edges, without the asymmetry problems mentioned above. For example, the natural con-

stant propagation rule, which propagates hasConstValue(X, C)@Qout, now does exactly the
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right thing on branch statements. The ability to write such rules has been very useful in
practice.

The semantics of in and out can still be given by desugaring them to indexed edges
names, but the desugaring is more complicated. In particular, in and out are desugared by
generating, for each propagation rule r, a specialized version of r for each input-output edge
pair of each statement type. A formal description of this expansion is given in Appendix A.

Another issue that arises with indexed edge names is determining whether or not an edge
index is in range. In order to facilitate this in-range check, I have chosen to disallow edge
indices from being used in rules that apply to multiple statement kinds. If a rule applies to
only one statement kind, then the number of incoming and outgoing edges is known, and
as a result it becomes easy to check that indices are in range. Furthermore, edge indices
are not allowed in transformation rules. Although these restrictions are more onerous than

necessary, they have not been a source of problems in practice.

2.2 Proving soundness automatically

My goal is to ensure automatically that a Rhodium optimization is sound, according the

following informal definition:

Def 1 A Rhodium optimization O, which includes any number of propagation rules and
transformation rules, is sound iff for all IL procedures P, the optimized version P’ of P,
produced by performing the transformations suggested by O, has the same semantics as P.

The automatic proof strategy used in the Rhodium system separates the proof that O
is sound into two parts: the first part is optimization dependent and it is discharged by an
automatic theorem prover; the second part is optimization independent and it was shown by
hand once and for all. For the optimization-dependent part, I define a sufficient soundness
property that must be satisfied by each propagation or transformation rule in isolation, and
I ask an automatic theorem prover to discharge this property for each rule. Separately, I
have shown manually that if all propagation and transformation rules of an optimization
satisfy the soundness property, then the optimization is sound. In the process of doing this,
I have also shown that if all the propagation rules are sound, then the induced analysis is

sound, meaning that its solution conservatively approximates the run-time behavior of the
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program. This result can be useful by itself, for example if one wants to use facts computed
by some propagation rules for a purpose other than optimizing transformations (say for
reporting errors to users).

The formalization of Rhodium, including this manual proof, is based on a previous
abstract-interpretation-based framework for composing dataflow analyses and transforma-
tions [63]. As a result, all Rhodium analyses and transformations can be composed, allowing
them to interact in mutually beneficial ways.

The next two subsections present the local soundness condition for forward propagation
rules and forward transformation rules, respectively. The description here is informal, and
is meant to provide an intuition for how the soundness checker works. The formal details,
along with a descriptions of the soundness conditions for backward rules, can be found in

Chapters 4, 5 and 6.

2.2.1 Propagation rules

The definition of soundness of a propagation rule depends on meaning declarations that
describe the concrete semantics of edge facts. The meaning of a fact f is a predicate on
concrete execution states, 7, with the intent that whenever f appears on an edge, the
meaning of f should hold for all concrete execution states 1 the program could be in when
control reaches that edge. For example, the meaning of hasConstValue(X,C), shown on
line 2 of Figure 2.1, is n(X) = C, where n(F) represents the result of evaluating expression
F in execution state 1. The meaning of hasConstValue therefore says that the value of X in
the execution state 1 should be equal to C'. Meanings are provided at the fact-schema level,
and they get instantiated in the same way as fact schemas. So, because the meaning of the
fact schema hasConstValue(X,C) is n(X) = C, the meaning of the fact hasConst Value(x, 3)
is n(x) = 3.

As another example, the meaning of mustNotPointTo(X,Y '), shown on line 2 of Fig-
ure 2.4, is n(X) # n(&Y), which says that the value of X in the execution state n
should not be equal to the address of Y. Finally the mustPointToSomeVar(X) declara-
tion in Figure 2.4 shows an example of a more complicated meaning. The meaning of

mustPointToSomeVar(X), shown on line 4 of Figure 2.4, is 3Z : Var . n(X) = n(&Z2),
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which says that there exists some variable that X must point to. In general, programmers
can use the full power of first-order logic to express meanings.

To be sound, a propagation rule must preserve meanings: if a rule fires at a CFG node
n, and the meanings of all facts flowing into n hold for execution states right before n, then
the meaning of the propagated fact must hold for execution states right after n. This is
stated informally in the following definition:

Def 2 A propagation rule is said to be sound iff it satisfies the following property:

For all concrete execution states n and CFG nodes n, if (1) the rule

fires at node n, (2) the meanings of all facts flowing into n hold for (prop-sound)
n, and (3) the execution of n from n yields n', then the meaning of prop

the propagated fact must hold for n'.

For each propagation rule, the soundness checker uses the Simplify [36] automatic the-
orem prover to discharge (prop-sound). For example, consider the rule on lines 6-7 of
Figure 2.3. The soundness checker effectively asks the theorem prover to show that if a
statement satisfying mustNotDef (X) is executed from a state 7 in which n(X) = C, then
7' (X) = C in the resulting state n’. The truth of this formula follows easily from the
user-provided definition of mustNotDef and the system-provided concrete semantics of the
Rhodium IL.

If all propagation rules are sound, then it can be shown by hand, once and for all, that
the flow function F' is sound. The definition of soundness of F' is the one from a previous
framework for composing dataflow analyses [63]. This definition depends on an abstraction
function o : D, — D, which formalizes the notion of approximation. The concrete semantics
of the Rhodium IL is a collecting semantics, so that elements of D. are sets of concrete
stores. Meaning declarations naturally induce an abstraction function «: given a set ¢ € D,
of concrete stores, a(c) returns the set of all dataflow facts whose meanings hold of all stores
in ¢. An element d € D approximates an element ¢ € D, if a(c) C d, or equivalently if the
meanings of all facts in d hold of all stores in ¢. The definition of soundness of F', adapted
from [63], is then as follows (where F is the concrete collecting semantics flow function):
Def 3 A flow function F' is said to be sound iff it satisfies the following property:

Y (n,c,d) € Node x D. x D .
alc) ©d = a(F.(n,c)) C F(n,d)
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The following lemma, which is formalized in Chapters 5 and 6, and proved in Appen-
dices C and D, provides the link between the soundness of local propagation rules and the

soundness of F'.

Lemma 1 If all propagation rules are sound, then the induced flow function F is sound.

Once we know that the flow function F' is sound, we can use the following definition and
theorem from the framework on composing dataflow analyses to show that the analysis A is
sound, meaning that its solution conservatively approximates the solution of the collecting
semantics of the IL:

Def 4 An analysis A is said be sound iff for any IL program P, and for any edge e in the

CFG of P, the concrete solution c at edge e (computed by the collecting semantics) and the
abstract solution d at edge e (computed by the analysis A) are related by a(c) C d.

Theorem 1 If the flow function F is sound, then the analysis A induced by the standard
dataflow equations of F is sound.

A formalization of Definition 4 and Theorem 1 can be found in Chapter 4 and a proof of
Theorem 1 can be found in Appendix B. The following theorem is immediate from Lemma 1
and Theorem 1:

Theorem 2 If all propagation rules are sound, then the analysis A induced by the propa-
gation rules is sound.

Theorem 2 summarizes the part of the soundness proof of A that was done by hand once
and for all. The automatic theorem prover is used only to discharge (prop-sound) for each
propagation rule, thus establishing the premise of Theorem 2 that all propagation rules are
sound. This way of factoring the proof is critical to automation. The proof of Theorem 2
(which includes proofs of Lemma 1 and Theorem 1) is relatively complex. It requires
reasoning about F', a and a fixed-point computation, each one adding extra complexity.
The proof also requires induction, which would be difficult to fully automate. In contrast,
(prop-sound) is a non-inductive local property that requires reasoning only about a single
state transition at a time. I have found that the heuristics used in automatic theorem

provers are well-suited for these kinds of simple proof obligations.
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2.2.2  Transformation rules

As with propagation rules, the automatic proof strategy used in the Rhodium system re-
quires an automatic theorem prover to discharge a local soundness property for each trans-
formation rule. Intuitively, a transformation rule is sound if the original and the transformed
statements have the same behavior, assuming that the meanings of all incoming facts hold.
This property is stated informally in the following definition of soundness for a transforma-
tion rule.

Def 5 A transformation rule if 1) then transform to n’ is said to be sound iff it satisfies
the following property:

For all concrete execution states n and CFG nodes n, if (1) the rule
fires at node n, (2) the meanings of all facts flowing into n hold for
n, and (3) the execution of n from n yields n', then the execution of
n' from n also yields n'.

(trans-sound)

As an example, consider the transformation rule on lines 8-9 of Figure 2.3. The sound-
ness checker effectively asks the theorem prover to show that the statements X := Y and
X := C have the same behavior, under the assumption that X is equal to C'. This follows
easily from the system-provided concrete semantics of the Rhodium IL.

The following theorem, which is formalized in Chapters 5 and 6, and proved in Appen-
dices C and D, summarizes the part of the proof of soundness of an optimization O that is
performed by hand:

Theorem 3 If all the propagation rules and transformation rules of a Rhodium optimiza-
tion O are sound, then O is sound.

As described earlier, the fact that each propagation rule is sound is sufficient to ensure
that the induced analysis A is sound. This fact, along with the fact that each transformation
rule is sound, is sufficient to show that all the suggested transformations can be performed
without changing the semantics of any IL procedure. Here again, the key to full automa-
tion is to split the proof task into an optimization-independent part, done by a human
once and for all, and an optimization-dependent part, discharged by an automatic theorem
for each optimization. Indeed, the theorem prover only needs to discharge (prop-sound)

and (trans-sound), both of which are local, non-inductive properties whose proofs are easy
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to automate. The proof of Theorem 3, on the other hand, would be difficult to fully au-
tomate, but since the theorem is optimization-independent, it can be proven by a human

once and for all.
2.3 Profitability heuristics

In many optimizations, the condition that specifies when a transformation is legal can be
separated from the condition that specifies when a transformation is profitable. Rhodium
provides profitability edge facts for implementing profitability decisions. Because they are
not meant to be used for justifying soundness, these facts have an implicit meaning of true,
and as a result, they can always be safely added to the CFG. The Rhodium system can
therefore give programmers a lot of freedom in computing these facts. In particular, the
Rhodium system allows programmers to write regular compiler passes called profitability
analyses, which are given a read-only view of the compiler’s data structures, except for the
ability to add profitability facts to the CFG. In this way, one can for example use standard
algorithms to annotate the CFG with facts indicating where the loop heads [7] are, what the
loop-nest [7] is, or how many times a variable is accessed inside of a loop — these algorithms
do not have to be expressed using propagation rules. Transformation rules can then directly

use these facts to select only those transformations that are profitable.

2.8.1 An example: loop-induction-variable strength reduction

To illustrate the use of profitability facts, I show how to write loop-induction-variable
strength reduction in Rhodium. The idea of this optimization is that if all definitions
of a variable I inside of a loop are increments, and some expression I * C is used in the
loop, then we can (1) insert X := I x C before the loop (2) insert X := X + C right after
every increment of I in the body of the loop and (3) replace I * C' with X in the body of
the loop. Consider for instance the code snippet in Figure 2.7(a). The result of performing
loop-induction-variable strength reduction is shown in Figure 2.7(b). Subsequent passes can
clean up this code even further: a constant propagation pass will transform x := i * 20
to x := 0, and then a dead-assignment elimination pass will remove all the assignments to

i.
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i = 0; i := 0;
while (...) { x :=1i * 20; < inserted
while (...) {
i=1i+1;
i=1i+1;
if (...) { X := x + 20; <~ inserted
i:=1+1;
} if (...) {
i =i+ 1;
y =1 * 20; X :=x + 20; < inserted
} }
y = X; < transformed
}

(a) (b)

Figure 2.7: Code snippet before and after loop-induction-variable strength reduction

The effect of this optimization can be achieved in Rhodium in two passes. The first pass
inserts assignments to the newly created induction variable x. The second pass propagates
arithmetic invariants to determine that x = i * 20 holds just before the statement y :=
i * 20, thereby justifying the strength-reduction transformation.

For the first pass, determining when it is safe to insert an assignment is simple: an
assignment X := F can be inserted if X is dead after the insertion point, and E does not
cause any run-time errors. The tricky part of this first pass lies in determining which of
the many legal insertions should be performed so that the later arithmetic-invariant pass
can justify the desired strength reduction. This decision of what assignments to insert can

be guided by profitability facts. A profitability analysis running standard algorithms can

insert the following three profitability facts:

e indVar(I,X,C) is inserted on all the edges in a loop (plus the incoming edge into
the loop) to indicate that I is a induction variable in the loop, X is a fresh induction
variable that would be profitable to insert, and C is the anticipated multiplication

factor between I and X.
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e afterIncr(I) is inserted on the edge immediately following a statement [ := I + 1.

e afterLoopInit(I) is inserted on the edge immediately following a statement [ := F

that is at the head of a loop.

In the example of Figure 2.7, indVar(i,x,20) would be inserted throughout the loop,
afterIncr(i) would be inserted after the increments of i and afterLoopInit(i) would be
inserted after the assignment i := 0. The following two transformation rules then indicate

which assignments should be inserted:*

decl X:Var, I:Var, C:Const

if stmt(skip) A dead(X)Qout A
afterIner(I)Qout A indVar(I, X, C)Qout
then transform to X := X +C

if stmt(skip) A dead(X)Qout A
afterLoopInit(I)@Qout A indVar(I, X, C)Qout
then transform to X :=7xC
Analogously to statement removal, statement insertion is expressed in Rhodium as replace-
ment of a skip statement. These skip statements are only virtual, and the compiler im-
plicitly inserts an infinite supply of them in between any two nodes in the CFG. The above
transformations are sound because of the dead(X) fact. The other facts are simply there to
guide which dead assignments to insert. Since their meaning is true and they are used in a
conjunction, they do not have any impact on soundness checking.®
For the second pass that runs after the dead assignments have been inserted, we can use
an arithmetic simplification optimization, shown in Figure 2.8. This optimization is driven
by an arithmetic invariant analysis that keeps track of invariants of the form F; = Ey x E3,
represented in Rhodium with the equalsTimes fact schema. A few representative rules from

this analysis are shown in Figure 2.8. These rules make use of a user-defined node fact

4This example is made simpler for explanatory purposes by eliding the profitability facts and transfor-
mation rules that would insert the declaration of the newly created induction variable.

5The profitability facts used here are all backward facts because the rules are all backward. Details on
how to check backward rules for soundness can be found in Chapter 6. However, the intuition of the
profitability fact being true, and thus disappearing because it is used in a conjunction, remains the same.



define forward edge fact equalsTimes(E;:Expr, Eo:Expr, Es:Expr)
with meaning n(FEq) = n(Es) *n(E3)

decl Ei:Ezpr, Es:Expr, E3: Expr
decl X:Var, Y:Var, I.Var
decl C:Int, Cqi:Int, Cy:Int, Cs:Int

if equalsTimes(E1, Ey, E3)Qin A
unchanged(E1) A unchanged(E3) A unchanged(E3)
then equalsTimes(E7, B2, E3)Qout

if stmt(X :=I1+«C)NX #1
then equalsTimes(X,I,C)Qout

© NS Uk W N

[
= O

if stmt(I :==14+Ci)NX #1 A
equals Times (X, I,Cy)Qin
then equalsTimes(X,I — Cy,Co)Qout

I
w N

—
-

if stmt(X :=X+Ci)ANX#1IAN
equals Times(X, I — Cy, C3)Qin A
Cy = applyBinaryOp(x,Ca, C3)

then equalsTimes(X,I,C3)Qout

if stmt(Y := 1% C) A equalsTimes(X,I,C)Qin
then transform to ¥V := X

[ e St
oo

=
© x

Figure 2.8: Arithmetic simplification optimization in Rhodium
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unchanged(E), which says that the current statement does not cause the value of E to
change. The rule on lines 14-17 also makes use of the built-in function applyBinaryOp,
which evaluates a given a binary operator on two integers. The optimization per se is
performed by a single transformation rule on lines 18-19, which says that a statement
Y := I % C can be transformed to Y := X if we know that X = I x C holds before the
statement.

The rules in Figure 2.8 are sufficient to trigger the strength-reduction trans-
formation in Figure 2.7(b). The statement x := i * 20 establishes the dataflow
fact equalsTimes(x,1,20). Every sequence of i := i + 1 followed by x := x + 20
propagates first equalsTimes(x,i-1,20) and then equalsTimes(x,1,20). As a result,
equals Times(x,1,20) is propagated to y := i * 20, thereby triggering the transformation
toy := x.

The strength-reduction example presented here illustrates two aspects of Rhodium that
allow programmers to express complex optimizations, despite Rhodium’s restricted syntax.
First, much of the complexity of an optimization can be factored into profitability analyses,
on which there are no expressiveness limitations. Second, optimizations that traditionally
are expressed as having effects at multiple points in the program, such as various sorts of
code motion, can in fact be decomposed into several simpler transformations, each of which
can be expressed in Rhodium.

The strength-reduction example illustrates both of these points. Loop-induction-variable
strength reduction is a complex code-motion optimization, and yet it can be expressed in
Rhodium using simple forward and backward passes with appropriate profitability analyses.
This way of factoring complicated optimizations into smaller pieces, and separating the part
that affects soundness from the part that doesn’t, allows users to write optimizations that

are intricate and expressive yet still amenable to automated soundness reasoning.

2.3.2 Tags

To express the strength reduction optimization from the previous section, the programmer
must be able to sequence the smaller Rhodium optimizations that together create the net

effect of strength reduction: first run the profitability analyses, then do dead assignment
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{ dead_assignment_elimination }
define backward edge fact dead(X: Var)
with meaning 7 /X =no/X

decl X:Var, E:Expr

{ dead_assignment_elimination }
if dead(X)Qout N mustNotUse(X)
then dead(X)Qin

{ dead_assignment_elimination }
if stmt(X := E) A dead(X)Qout
then transform to skip

Figure 2.9: Dead assignment elimination with tags

Vf € facts(r) . tags(r) C tags(define edge fact f(...)) (2.1)
tags(define edge fact f(...)) C tags(if ¢ then f(...)@...)) (2.2)

Figure 2.10: Consistency and completeness requirements for tag annotations

insertion, then arithmetic simplification, and finally dead assignment elimination.

Rhodium allows a programmer to express such sequencing via tags. A tag is a string
that the programmer attaches to a fact-schema declaration, a transformation rule or a
propagation rule. For example, Figure 2.9 shows some of the declarations and rules from
dead assignment elimination, tagged with “dead_assignment_elimination” (the meaning of
dead(X) will be explained in Section 6.2.3). The Rhodium execution engine then provides
the compiler writer with a function run_tagged_opts that, given a set 1" of tags, runs the
Rhodium program that contains only those declarations and rules that have a tag in 1. The
run_tagged_opts function can be seen as providing a simple form of slicing of the Rhodium
optimization rules, where the programmer can use tag annotations to specify what fact
schemas and rules to include in a given slice. If the slice selected by run_tagged_opts contains
both forward and backward rules, the forward rules are run first, followed by the backward
ones.

Tag annotations must satisfy some consistency requirements, so that slices selected by
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run_tagged_opts are well formed. For example, it would not make sense to include a trans-
formation rule in a slice, but not the declarations of fact schemas that are used by the
transformation rule. Equation (2.1) from Figure 2.10 shows the consistency requirements
for tag annotations, where tags(s) represents the user-provided tags for a rule or declaration
s, and facts(r) represents the names of all the facts used in a rule r. Equation (2.1) says
that if a rule is annotated with a tag, then so must the declaration of all fact schemas
referenced in the rule.

Tag annotations should also satisfy a completeness requirement, so that all the rules
required to compute a fact are included in the slice. Equation (2.2) shows the completeness
requirements for tag annotations: it says that if a fact-schema declaration is annotated
with a tag, then so must all the rules propagating instances of that fact schema. Although
the completeness requirement is not necessary for the selected slice to be well-formed, it is
nevertheless a useful property to have, since it guarantees that no rules were mistakenly
omitted from the slice.

Unfortunately, it can be quite burdensome for the programmer to consistently and com-
pletely annotate all the rules and declarations in a well-formed slice. To alleviate this
burden, the Rhodium system can infer a consistent and complete set of tags for an entire
slice given only the tags for the transformation rules. As a result, the programmer only
needs to tag transformation rules, with the remaining tags inferred by the system.

Inferring tags consists of finding, for each rule and declaration, the least set of tags that
satisfies the two constraints from Figure 2.10, with the additional constraint that tags on
transformation rules must match the user-provided tags. A standard fixed-point algorithm
for solving subset constraints can achieve this goal. All tags on transformation rules are
initialized to the user-provided values, while the remaining tags are initialized to the empty
set. The two constraints from Figure 2.10 are then repeatedly applied until no more changes
occur. In particular, for each tag appearing on a rule, the algorithm adds the tag to the
declaration of all fact schemas used in the rule’s antecedent; and for each tag appearing
on a fact-schema declaration, the algorithm adds the tag to all the rules that propagate
instances of that fact schema.

Putting all this together, Figure 2.11 shows how to control the sequencing for loop-
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void run_loop_induction_variable_strength_reduction() {
run_profitability_analyses();
run_tagged_opts ({ “dead_assignment_insertion” });
run_tagged_opts ({ “arithmetic_simplification” });

run_tagged_opts ({“constant_propagation”});

o~ o~ o~ o~

run_tagged_opts ({ “dead_assignment_elimination” });

}

decl X:Var, Y:Var, I:Var
decl C:Const, Cy:Const, Cs:Const, Cs:Const
decl E:FExpr

{ dead_assignment_insertion }

if stmt(skip) A dead(X)Qout A
afterIncer(I)Qout A indVar(I, X, C)Qout

then transform to X := X +C

{ dead_assignment_insertion }

if stmt(skip) A dead(X)Qout A
afterLoopInit(I)Qout A indVar(I, X, C)Qout

then transform to X :=7xC

{ arithmetic_simplification }
if stmt(Y :=1xC) A equalsTimes(X,I,C)Qin
then transform to Y := X

{ constant_propagation }

if stmt(X =Y x Cy) A hasConstValue(Y,Cy) A
C3 = applyBinaryOp(x,Cq, Cs)

then transform to X := (3

{ dead_assignment_elimination }
if stmt(X := E) A dead(X)Qout
then transform to skip

Figure 2.11: Sequencing of optimizations for loop-induction-variable strength reduction
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induction-variable strength reduction, assuming that the compiler is written in a C-like lan-
guage. At the top of the figure, the function run_loop_induction_variable_strength_reduction
is the main entry point of the optimization. This function is written in the C-like language
that the compiler is written in, and a call to it must be inserted inside the main optimizing
loop of the compiler. The optimization begins by calling run_profitability_analyses, a func-
tion written by the programmer that runs the required profitability analyses, annotating
the CFG with instances of the profitability facts indVar, afterIncr, and afterLoopInit. These
profitability analyses are also implemented in the language the compiler is written in, and
they make use of a function provided by the Rhodium system, namely add_profitability_fact,
that allows the programmer to add a given profitability fact to a given CFG edge. Af-
ter the profitability analyses have run to completion, the strength reduction optimization
calls run_tagged_opts fours times in order to run the rules for dead assignment insertion,
arithmetic simplification, constant propagation, and finally dead assignment elimination.
The appropriately tagged transformation rules are shown at the bottom of the figure. For
brevity, Figure 2.11 only shows those transformation rules that would fire on the example
from Figure 2.7.

Since arithmetic simplification and constant propagation are both forward optimizations,
and since they are invoked one after another, it would be possible to run them together with

a single call to run_tagged_opts:
run_tagged_opts ({“arithmetic_simplification”, “constant_propagation”});

Alternatively, one could add a new tag, “post_assignment_insertion”, to the arithmetic

simplification and constant propagation rules, as shown below:

{ arithmetic_simplification, post_assignment_insertion }
if stmt(Y := 1% C) A equalsTimes(X,I,C)Qin
then transform to Y := X

{ constant_propagation, post_assignment_insertion }
if stmt(X =Y x C2) A hasConstValue(Y,Cq) A

Cs3 = applyBinaryOp(x,Cy, Cs)
then transform to X := Cy
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One could then run arithmetic simplification and constant propagation together by calling
run_tagged_opts ({ “post_assignment_insertion”). As this example shows, rules can be anno-
tated with multiple tags, and calling run_tagged_opts(T) has the effect of running all the
rules that have been annotated with a tag from T (or, alternatively, all the rules r for which

tags(r)NT # 0).
2.4 Dynamic semantics extensions

The meaning of dataflow facts presented so far all talked about the concrete program states
occurring on edges annotated with the fact. Unfortunately, the natural way to express the
meaning of certain dataflow facts is to use a predicate over complete traces of program
states rather than single program states.

As a motivating example, consider extending the pointer analysis from Figure 2.4 with
heap summaries [24, 97], where each allocation statement S represents all the memory
blocks allocated at S. The meaning of mustNotPointTo(X,S), where X is a variable and S
is an allocation site, is that X does not point to any of the memory blocks allocated at S.
This property, however, cannot be expressed by just looking at the current program state,
because there is no way to determine which memory blocks were allocated at site S.

One way to fix this problem would be to enrich Rhodium meanings so that they talk
about execution traces. From the execution trace one can easily extract the memory blocks
that were allocated at site S (by evaluating, for each statement S : X := new T in the trace,
the value of X in the successor state). However, to extract this information, one has to
use quantifiers that range over indices of unbounded-length traces. Unfortunately, I have
found the heuristics used in automatic theorem provers for managing quantifiers to be easily
confounded by these kinds of quantified formulas that arise when using unbounded-length
traces.

To solve this problem Rhodium allows the program state to be extended with user-
defined components called state extensions. These components are meant to gather the
information from a trace that is relevant for a particular dataflow-fact schema. Instead of
referring to the trace, the meaning can then refer to the state extension. For the above

heap summary example, the state would be extended with a map describing which heap
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locations were allocated at which sites, and the meaning of mustNotPointTo could then use
this map instead of referring to the trace.

To update the user-defined components of the state, programmers also extend the dy-
namic semantics of the intermediate language. Because of the way these extensions to the
semantics are declared, they are guaranteed to be conservative, meaning that the trace of
a program in the original semantics and the corresponding trace in the extended semantics
agree on all the components of the program state from the original semantics. As a result,
if we preserve the extended semantics using the regular Rhodium proof strategy, we are
guaranteed to also preserve the original semantics. User defined state extensions are just a
formal tool for proving soundness: they can be erased without having any impact on how
analyses or IL programs are executed.

I present state extensions in more detail by showing how they can be used to ex-
tend the pointer analysis from Figure 2.4 with heap summaries. To define the meaning
of mustNotPointTo over summaries, I define an additional component of the program state
called summary_of, which maps each heap location to the heap summary that represents it.
I start by considering allocation site summaries, where the locations created at the same site
are summarized together by the node that created them. The declaration of summary _of
then looks as follows:

type HeapSummary = Node

define state extension
summary_of : Loc — HeapSummary

The summary_of map gets updated according to the following dynamic semantics exten-
sion:®

decl X:Var, T:Type

if stmt(X := new T)
then (nQout).summary_of =
(nQin).summary_of nQout(X) — currNode]

5The new statement in the Rhodium intermediate language creates a dynamically typed slot, and so the

actual syntax for new is X := new. I use a typed version of the new statement here, namely X := new T,
in order to show that the techniques presented here would be flexible enough to also support type-based
summaries, as shown in Table 2.1.



38

Table 2.1: Various kinds of heap summarization strategies achievable by varying the defini-
tion of HeapSummary and the dynamic semantics extension

HeapSummary | n@out(X) maps to this in the

dynamic semantics extension

Allocation-site summaries Node currNode
Type-based summaries Type T
Variable-based summaries Var X
Single heap summary unit 0

The terms n@in and n@out refer respectively to the program states before and after the cur-
rent statement, while the special term currNode refers to the current CFG node (currStmt
refers to the statement at the current node, and currNode refers to the actual node). The
rule as a whole says that an allocation site X := new T updates the summary _of component
of the state by making the newly created location, obtained by evaluating X in n@out, map
to the CFG node that was just executed. In all other cases the summary_of component
implicitly remains unchanged.

One can easily modify the above declarations to achieve other kinds of summaries.
In particular, Table 2.1 shows how to modify the HeapSummary definition and change
what n@Qout(X) maps to in the dynamic semantics extension in order to specify different
summarization strategies. The rest of my treatment of heap summaries applies to all of the
strategies, except when explicitly stated.

The next step is to define the domain of abstract locations:
type AbsLoc = Var | HeapSummary

An abstract memory location AL of type AbsLoc is either a variable or a heap summary.
The intuition is that AL represents a set of concrete memory locations: if AL is a variable,
it represents the address of the variable; if AL is a heap summary, it represents the set of

summarized heap locations.
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I can now modify the mustNotPointTo fact schema to take abstract locations, instead

of just variables (the meaning is explained below):

define edge fact mustNotPointTo(ALy:AbsLoc,ALy:AbsLoc)

with meaning
VL : Loc .
belongsTo(L, ALy,n) A isLoc(n(xL)) =
—belongsTo(n(xL), AL2,n)

define belongsTo(L:Loc, AL:AbsLoc,n:State) =
isVar(AL) = [L = n(&AL)] A
isHeapSummary(AL) = [n.summary_of [L] = AL]

The meaning of mustNotPointTo says that none of the locations belonging to AL points to
any of the locations belonging to ALs. The locations belonging to ALy are those locations
L for which belongsTo(L, ALy, n) holds. For all these locations L,” we look up the memory
content of L using n(«L). If the memory content n(xL) is another location, i.e. a pointer,
then we want n(xL) to not belong to ALs.

The auxiliary function belongsTo(L, AL,n) returns whether or not a location L belongs
to an abstract location AL in state . The definition of belongsTo is split into two cases,
based on the type of AL. If AL is a variable, then L belongs to AL if L is exactly the
address of AL. If AL is a heap summary, then L belongs toAL if n.summary_of maps L to
AL.

The Rhodium system provides a variety of built-in primitives for testing the types of
values, such as for example isLoc and isVar. The programmer has the ability to define such
primitive functions as well, by using prim blocks inside the Rhodium code. A prim block is
simply a set of axioms, written in the underlying language of the theorem prover, that gets
added to the theorem prover’s background knowledge. Rhodium programmers can therefore
define primitive functions by providing the appropriate axioms in prim blocks to define their
behaviors. In their full generality, prim blocks allow programmers to add arbitrary axioms

to the system, which could lead to unsoundness, for example if the programmer asks the

"The quantifier VL : Loc ranges over an infinite set, but it used in a meaning, not in the antecedent of a
rule.
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theorem prover to assume exactly the obligation that it is being asked to show.

In the current system, programmers must use prim blocks to implement state extensions
and meanings that use state extensions (for example, the meaning above, including the
belongsTo and isHeapSummary functions). In essence, the language for implementing these
state extensions and meanings is the first-order logic language of the Simplify [36] theorem
prover, rather than the nicer language shown above. The Simplify code in these prim blocks
is syntactically more complicated than the above code, but logically it performs the same
operations. As future work, I would like to formalize the language shown above and modify
the Rhodium soundness checker to parse and translate this language into Simplify code, so
that programmers are not required to write prim blocks. This will not only make it easier
for programmers to write state extensions and meanings over these extensions, but it will
also prevent programmers from compromising soundness through prim blocks.

Now that the mustNotPointTo fact schema can take heap summaries as parameters, the
rules for the pointer analysis from Figure 2.4 must be modified to take these summaries
into account. I only present a few representative examples here. The following rule, which
works only for allocation-site summaries, says that after an allocation site X := new T, X

does not point to any heap summary that is different from the current node:

decl Summary: HeapSummary, X:Var, T: Type

if stmt(X :=new T') A Summary # currNode
then mustNotPointTo(X, Summary)Qout

To prove this rule sound, the theorem prover must show that the meaning of
mustNotPointTo(X, Summary) holds after X := new T". Since X is a variable and Summary
is a heap summary, the meaning expands to isLoc(n(X)) = n.summary_of[n(X)] #
Summary. Since the theorem prover knows that new 7" returns a location, it determines that
isLoc(n(X)) holds, and then the remaining obligation is n.summary _of [n(X)] # Summary.
To prove this, the theorem prover makes use of the user-defined extension to the dynamic
semantics. Indeed, if we let 1 be the program state right after executing the allocation,
then the dynamic semantics extension tells us that n.summary_of n(X)] = currNode. In

conjunction with Summary # currNode, this implies n.summary_of [n(X)] # Summary,
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which is what needed to be shown.

The above rule for stmt(X := new T') works only for allocation-site summaries. Of
all the pointer analysis rules, it is the only one that depends on the heap summarization
strategy. To modify it for other kinds of heap summaries, the antecedent of the rule should
compare Summary with the third column of Table 2.1, rather than with currNode.

As another example, here is the pointer analysis rule that requires the most complex

reasoning from the theorem prover:

decl X:Var, Y:Var, ALy:AbsLoc

if stmt(X = %xY) A
VAL : AbsLoc . mayPointTo(Y, AL;)Qin =
mustNotPointTo(ALy, ALy)Qin
then mustNotPointTo(X, ALy)Qout

In the above rule, mayPointTo is defined as before: mayPointTo(ALy, ALy) =
—mustNotPointTo(ALy, ALy). The rule as a whole says that X does not point to any
of the locations in ALy after X := «Y if for all abstract locations AL; that Y may point to,
it is the case that none of the locations in ALy point to any of the locations in ALs.

The pointer analysis example in this section has shown how user-defined state extensions
can be used as a theoretical device for reducing the complexity of obligations sent to the
theorem prover. State extensions allow the programmer to re-express meanings that, at first
sight, might seem to require mentioning run-time traces, as meanings that only mention the
current program state. Since the automated theorem prover used in the Rhodium system
has a much easier time reasoning about states than about traces, this ability to convert
trace references into state references allows the Rhodium system to reason about a broader

class of optimizations.
2.5 Termination

In addition to determining whether or not a Rhodium optimization is sound, the program-
mer would like to determine whether or not an optimization terminates. One easy way of
guaranteeing termination is to make the domains of fact-schema parameters finite for a par-

ticular intermediate language program. For example, one could define the Const and Ezpr
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decl X:Var, A:Var, B:Var, C:Const, OP:BinaryOp

if stmt(X := A OP B) A
hasConstValue(A, Cy)@Qin A
hasConstValue(B, C)Qin A
C = applyBinaryOp(OP, C1,Cs)

then hasConstValue(X, C)Qout

Figure 2.12: Additional constant propagation rule

domains so that, rather than representing all possible constants and expressions, they repre-
sent only those constants and expressions that appear in the intermediate-language program
being analyzed. In this scenario, the powerset lattice over which the analysis runs would
be finite. Furthermore, as discussed in Section 2.1.3, the flow function F' is guaranteed to
be monotonic, and so the dataflow values computed by iterative analysis form an ascending
chain. This, combined with the finiteness of the domain, guarantees termination [82].
Although it may be appealing to restrict Const and Expr to be finite for the sake of
termination, the infinite unrestricted versions of Const and Expr are important for achieving
Rhodium’s expressive power.® For example, being able to refer to expressions that are not in
the analyzed program is crucial for expressing the arithmetic invariant analysis equals Times
from Figure 2.8. Furthermore, by making use of infinite domains, Rhodium can perform
range analysis where the end points of the range are not restricted to constants in the
program. Finally, Rhodium can express a version of constant propagation that constructs
and propagates constants that are not in the source code, as shown by the rule in Figure 2.12.
However, with this extra flexibility comes a challenge: whereas analyses over finite do-
mains are trivially guaranteed to terminate, analyses over infinite domains, on the other
hand, may very well run forever. There are two ways in which a Rhodium analysis might
run forever. The first one is that a particular rule might not terminate. The second is that

the fixed-point computation might not terminate. I deal with each one of these in the next

8When I say finite or infinite here, I mean finite or infinite once a given finite intermediate-language
program has been chosen.
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two subsections.

2.5.1 Termination of a single rule

To guarantee that execution of a rule terminates, one must guarantee that the rule has only
a finite number of instantiations (i.e., substitutions for its free variables), and that each
instantiation can be evaluated in finite time. For the latter, I restrict the logic of each rule’s
antecedent to the decidable subset of first-order logic in which quantifiers range only over
finite domains.”

For the former, each rule must intuitively satisfy a “finite-in-finite-out” property: if a
rule is invoked on a node where all incoming edges have finite sets of facts, then the rule
will have only a finite number of instantiations and will generate only a finite set of facts on
outgoing edges. Unfortunately, unrestricted propagation rules do not have that property:

it is possible for a sound rule to propagate infinitely many dataflow facts, even when the

input facts are finite. For example, consider the following sound range-analysis rule:

define forward edge fact inRange(X : Var,lo : Const,hi : Const)
with meaning lo < n(X) An(X) < hi

if Stmt(X = C)/\Cl <CNCy>C
then inRange(X,Cy, Co)Qout

There are infinitely many instantiations of Cy and Cs that will make this rule fire, even if
the input contains no dataflow facts.

To prevent such a situation, I adapt a notion from the database community called
safety [116]. A Rhodium propagation rule is said to be finite-safe if every free variable
of infinite domain in the consequent is finite-safe. A variable is finite-safe if it appears
(after expanding virtual facts and folding away all negations) in the antecedent either in a
dataflow fact, or on one side of an equality where the other side contains only finite-safe
variables; finite-safe variables thus are constrained to have a finite number of instantiations
if the input fact set is finite. The range-analysis rule above is not finite-safe, since neither

C'1 nor Cy is finite-safe.

9Here again, the domain must be finite for a particular program, not necessarily for all programs.



44

Even if all rules are finite-safe, a rule can still be invoked on an infinite input set: L.
This case can happen at the start of analysis, since all edges (aside from the entry edge)
are initialized with 1. However, L can be treated specially without invoking any of the
user-defined propagation rules. In particular, for nodes that have one input edge, it is sound
to propagate L when the input is L. For nodes that have two input edges (merge nodes),
if any one of the two inputs is L, then it is sound to propagate the other input (whether it
be L or not).

Thus, if all rules are finite-safe, either they will be invoked with L on all input edges,
and immediately propagate L, or they will be invoked with a finite set of input facts on

some edge and propagate another finite set of output facts in finite time.

2.5.2  Termination of the fized-point computation

As discussed in Section 2.1.3, the flow function F' is guaranteed to be monotonic, and so
the dataflow values computed by iterative analysis form an ascending chain. To guarantee
termination, all that is left is to ensure that all ascending chains in the lattice have finite
length.

In order to do this, recall from Section 2.5.1 that the finite-safe requirement was imposed
on all propagation rules, which led to all propagated sets being either finite or L. It is
therefore possible to shrink the lattice of the analysis to include only these finite sets and
L. The original underlying lattice was the power-set lattice, in which the ordering was
the superset relation. The shrunken lattice uses this same ordering, which means that all
ascending chains in the shrunken lattice must have a finite length, since the longest chain
of decreasing-sized finite sets is finite. Notice that the lattice does not have a finite height,
because there can still be infinite descending chains.

The technique presented here for guaranteeing termination is effective even in the face of
fact schemas with infinite-domain parameters. For example, the equalsTimes fact schema
has all three of its parameters ranging over infinite domains, and yet the Rhodium system
is still able to guarantee that the analysis terminates. In this case, the shrunken lattice is
infinitely wide and infinitely tall, but its ascending chains are nonetheless guaranteed to be

finite.
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2.5.8 Custom merges

The range-analysis propagation rule in Section 2.5.1 was sound but not finite-safe: it could
produce an infinite (and non-_1) set of output inRange facts. However, the meaning of one
of the propagated inRange facts, inRange(X, C, ), implies all the others’ meanings. So an

alternative sound and finite-safe propagation rule could be the following:

if stmt(X :=C)
then inRange(X, C,C)Qout

Unfortunately, this propagation rule interacts poorly with the powerset lattice’s join
function, intersection. If intersection is used to join the fact set {inRange(x,1,1)} with
{inRange(x,2,2)}, the resulting set is {}. One would prefer instead to get the fact set
{inRange(x,1,2)}: this fact set is sound (and precise) since its meaning is exactly the
disjunction of the meanings of the two merging fact sets.

Rhodium avoids this information-loss problem while retaining finite-safe propagation
rules by allowing programmers to define their own merges. Rather than provide special
syntax for defining merge functions, [ simply introduce a merge statement for which users

can write ordinary Rhodium propagation rules:

decl X:Var, Cy:Int, Co:Int, Cs:Int, Cy:Int
if stmt(merge) A
inRange(X, Cy,Cy)@Qin[0] A
inRange(X, C3,Cy)Qin[1]
then inRange(X, min(Cy,C3), maz(Ca, Cy))Qout
This rule, which uses edge indices as described in Section 2.1.5, propagates the union of
its two incoming ranges. The functions min and maz are provided as primitives by the
Rhodium system, but the programmer could have defined these as well using prim blocks.
When a rule refers to multiple input or output edges, there is one proof obligation sent
to the theorem prover for each input-output-edge pair. The general version of (prop-sound)
that handles an arbitrary number of input and output edges is given in Chapters 5 and 6. In
the above case, there would be two proof obligations, one for input edge 0 and one for input

edge 1. For input edge 0, the soundness checker would ask the theorem prover to show that
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if the meaning of inRange(X, Cq, C2) holds of some program state 1, and 7 on edge 0 steps
to ' through the merge node, then the meaning of inRange(X, min(C1,Cs), maz(Cs, Cy))
holds of 7/. A similar proof obligation would be generated for input edge 1.

From a formal point of view, the lattice of the implicitly defined dataflow analysis A
must be modified in order to take into account custom merge functions. Consider the
example above, where the merge of S = {inRange(x,1,1)} and T" = {inRange(x,2,2)}
gives merge(S,T) = {inRange(x,1,2)}. In the powerset lattice of all dataflow facts, the
expressions S, T and merge(S,T) are unrelated. To prove the soundness of the custom
merge, the lattice must be defined in such a way so that SUT T merge(S,T) holds, meaning
that the user’s merge function returns an approximation of the best possible merge (which
is U).

To address this problem, when a user-defined merge function is specified, the implicitly
defined analysis A must run over a more general lattice, namely the lattice of predicates:
(D,U,M,C, T, L) = (Pred,V,\,=, true, false). This lattice subsumes the powerset lattice
since a set of dataflow facts can be interpreted as a predicate by taking the conjunction of
the meanings of all the dataflow facts in the set. The view shown to the programmer is still
that sets of dataflow facts are being stored on edges, but from a formal point of view, these
sets are interpreted as predicates. In the example above, S becomes 1 < x < 1, T' becomes
2 <x <2, and merge(S,T) becomes 1 < x < 2. Therefore SUT = (1 <x<1)V(2<x<2),
and since (1 <x<1)V(2<x<2)=1<x<2, wenow have SUT C merge(S,T) as
desired. More generally, if a merge rule passes property (prop-sound), then it is guaranteed
that if S and T are the two incoming predicates to the merge node, then the outgoing
predicate merge(S,T) will satisfy SV T = merge(S,T), or SUT C merge(S,T) in the
lattice of predicates.

Unfortunately, the lattice of predicates, even when shrunken to the meanings of only
finite sets of facts plus L, does not have the finite-ascending-chain property. Consider,
for example, the inRange fact schema, and the infinite sequence Sy, S, S59,..., where
Si; = {inRange(x,0,i)}. Each one of the sets S; is finite and therefore belongs to the
shrunken lattice; furthermore the sequence is an ascending chain, because each .S; implies

S;+1. Consequently, termination of the fixed-point computation is not guaranteed of anal-



47

yses using custom merges, and indeed the kind of range analysis discussed here does not
terminate.°

To allow the optimization writer to achieve termination in such cases, as well as allowing
the optimization writer to make terminating analyses converge faster, Rhodium provides
widening operators [29]. A Rhodium widening operator is a function, written in the under-
lying language of the compiler, that takes a node, an incoming dataflow fact set, and an
“unwidened” outgoing dataflow fact set, and produces the widened outgoing fact set. The
run_tagged_opts function described in Section 2.3.2 takes as an additional parameter one of
these widening operators. After the Rhodium evaluation engine runs the propagation rules
on a node n, given an input set d;, to produce an “unwidened” output set d,,:, the widening
operator, which was provided as a parameter to run_tagged _opts, is run on n, d;,, and d gy
to produce the widened output set d;q.. Finally, the engine computes merge(dout, dwide)
(using either the default merge or a custom merge if one is specified) as the final outgo-
ing set to propagate. From the soundness of F' we know that the facts d,,; are sound,
and since merge(doyt, duwide) is more conservative than d,y:, merge(doyt, duwide) must also be
sound, regardless of the value of d;4.. This means that the value d;4. returned by the
widening operator does not affect soundness — it only makes the result more conservative,
thus helping the iterative analysis reach a fixed point faster. The Rhodium system cannot,
however, statically guarantee that the widening operator provided by the programmer is

strong enough to ensure termination.

1°0r, if using bounded-sized integers, it takes a long time.
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Chapter 3

PROGRAMS MANIPULATED BY RHODIUM OPTIMIZATIONS

This chapter describes the programs over which Rhodium optimizations run. I start by
describing the Rhodium intermediate language (IL), which is a textual representation of
these programs. I then present a CFG-based intermediate representation (IR) for these IL
programs. Finally, the chapter concludes with the operational semantics of this IR.

This chapter serves mostly as documentation of the current Rhodium IL and its seman-
tics, so that Rhodium programmers can understand how to write rules that are sound. The
details of the Rhodium IL are in fact quite orthogonal to the main contribution of this
dissertation. Once the semantics of the Rhodium IL is defined in Section 3.4 using a step
relation, the rest of the dissertation treats this step relation as a black box. The only place
where the step relation comes up again is in the background axioms that the theorem prover
uses to discharge soundness obligations (see Section 5.4.4). As a result, many of the details

of the syntax and semantics of the Rhodium IL can be changed with little effort.

3.1 The intermediate language

Rhodium optimizations run over a C-like IL with functions, recursion, pointers to dynam-
ically allocated memory and to local variables, and arrays. Figure 3.1 shows the grammar
of IL programs. An IL program is a set of procedures, where each procedure contains a
sequence of statements. A procedure takes one parameter, and returns one value using the
return statement. The Rhodium IL is dynamically typed, and so procedure declarations do
not include type annotations. Similarly, declarations of IL variables do not include types.
An IL program does not have a distinguished entry procedure — it may be entered by
calling any of its procedures. The Rhodium system preserves the semantics of each procedure
in isolation, and so IL programs can be compiled separately and then safely linked together.

Statements or expressions in the IL can get stuck, meaning that they cannot be evaluated
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Figure 3.1: Rhodium intermediate language
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any further. If a statement or expression tries to violate type-safety or memory-safely, for
example by dereferencing an integer, then it will get stuck. Statements can also get stuck
if they violate basic typechecking requirements, for example, by trying to call a procedure
that does not exist, or referencing a variable that has not been declared. One interpretation
of stuckness is that it represents run-time errors. Another interpretation, which is the one
taken in this dissertation, is that stuckness is the result of an underspecified semantics:
when a statement is stuck in a program state, then its semantics in that program state is
simply unspecified. Section 4.2 discusses how stuckness interacts with the requirement of
preserving the semantics of programs.

The following descriptions give an informal semantics of the IL statement forms, includ-
ing when they get stuck. The full details are in the formal description of the small-step

semantics in Section 3.4.

e decl ‘x declares a single dynamically-typed variable x, and initializes it to the special
value uninit. This special value is used in the definition of the IL semantics to represent
uninitialized memory locations, and it is not available in the syntax of IL programs.
If the variable x has already been declared, the statement is stuck. IL variable names
(as well as procedure names and label names) are preceded by a ‘ mark. Although
this seems unnecessary at this point, the need for a ¢ mark will become clear once the
syntax of the Rhodium IL is embedded in the syntax of Rhodium. At that point, the
syntax will include both Rhodium variable names, and IL variable names. The ¢ mark
will distinguish the two kinds of names: names starting with a ¢ will be IL variables,
and names without a ¢ will be Rhodium variables. To make code snippets easier to
read in this dissertation, I use fonts and typecase instead of a ‘ mark to distinguish
between the two kinds of names: lower case names in typewriter font, for example x,
will refer to Rhodium IL variables, and capital names in ITALICS font, for example

X, will refer to Rhodium variables.

e decl ali] declares an inline (stack-allocated) array with i dynamically-typed elements,
each one initialized with uninit. If a has already been declared, or i does not contain

an integer greater than 0, then the statement is stuck.
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skip is a no-op, and it is never stuck.

x := new allocates a single dynamically-typed slot on the heap, initializes its contents
to uninit, and stores the address of the slot in x. If x is not declared, the statement

is stuck.

x := new arrayli] allocates an array on the heap with i dynamically-typed elements,
each one initialized with uninit. If x is not declared, or i is not an integer greater

than 0, then the statement is stuck.

x = Fxpr is an assignment to a variable x. An expression Expr is either a base
expression (which is a constant or a variable), a variable dereference, a variable refer-
ence (address-of operator), an array index operation, or an arithmetic operator OP.
If x is not declared, or Ezpr gets stuck, then the statement is stuck. Furthermore,
the assignment is also stuck if it attempts to copy an aggregate value, for example a

whole array.

*x = y is a pointer store. If x or y are not declared, or x does not point to a valid
location, the statement is stuck. The statement is also stuck if it attempts to copy an

aggregate value.

x := f(BaseFzxpr) is a function call. If either x is not declared, the function £ does not
exist, BaseEzpr gets stuck, or BaseEzpr is an aggregate value, then the statement is

stuck. Furthermore, the call is stuck if it would cause a stack overflow.

if BaseExpr goto 1; else 1y is a branch statement. If BaseFxpr evaluates to 1
(true), the branch goes to 11; if BaseFEzpr evaluates to 0 (false), the branch goes to

1s; otherwise, the statement is stuck.
label 1 is a label statement. It acts as a no-op, and it is never stuck.

return x is a return statement. If x is not declared, or it contains an aggregate value,

the statement is stuck.
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*((&ILVar)[ILVar]) := ILVar

| write to inline array)
| ILVar := x((&ILVar)[ILVar])

|

|

read from inline array)
*(ILVar[ILVar]) := ILVar
ILVar := *(ILVar[ILVar])

write to heap array)

o~ o~ o~ o~

read from heap array)

Figure 3.2: Additional statement forms for convenient array access

The Rhodium IL contains most of the features of C. The main features from C that are
missing are structures and pointer arithmetic. However, these omitted features are similar
to ones already handled by the Rhodium system. In particular, because Rhodium arrays
are heterogeneous, structures can be modeled exactly like arrays, except that values are
indexed by strings, rather than integers. Furthermore, pointer arithmetic could be modeled
in the same way as array indexing. As a result, the ideas presented in this dissertation
should be easily adaptable to a language with structures and pointer arithmetic.

The Rhodium IL also differs from C in the way that arrays are accessed. The -[-]
operator in the Rhodium IL returns the address of an array element, rather than the element
itself. In particular, the expression z[i] takes a pointer = to some array and an index ¢, and
returns the address of the i element of the array. After getting a pointer to a array
element using - [-], the actual element can be accessed using a regular dereference. As a
simple example, the following two IL code snippets both allocate an array of size 10, and
then store 5 in the 0% element (the code on the left allocates the array on the heap, while

the code on the right allocates the array on the stack):

decl i; decl i;

i :=10; i := 10;

a := new arrayl[i]; decl alil;
decl tmp; decl addra;
tmp := al[0]; addra := &a;
*tmp := 5; decl tmp;

tmp := addral[0];
*tmp := 5;
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For convenience, the Rhodium IL provides additional statement forms, shown in Fig-
ure 3.2, for writing and reading array elements directly. These “compound” statement forms
are redundant, in that they can be desugared into statements from the simpler language of
Figure 3.1.

Finally, the Rhodium IL does not have explicit I/O instructions. Instead, I/O is modeled
by having an I/O library that IL programs call into. From the point of view of a client IL
program, functions in the I/O library are black boxes. The Rhodium system can already
handle calls to functions for which it does not have access to the body, and so it can handle

calls to I/O functions in exactly the same way.
3.2 Notation

Before presenting the intermediate representation for IL programs in Section 3.3, this section
describes some of the notation used in the remainder of this dissertation. If A is a set,
then A* is the set of all tuples of elements of A. Formally, A* £ Ui>o A’ where AF =
{(ag, . ..,ax_1)|a; € A}. I denote the i'* projection of a tuple x = (z, ..., x_1) by z[i] £ ;.
Given a function f : A — B, I extend f to work over tuples by defining 7) : A — B*

A

as 7((1’0,...,1’k)) = (f(xo),..., f(zr)). T also extend f to work over maps by defining
f:(0— A)— (0 — B) as f(m) £ o.f(m(0)).

I extend a binary relation R C 2P*P over D to tuples by defining the ]_%> relation by:
ﬁ((l’o, ces i)y (Yos - -+, yk)) iff R(zo,y0) A .. AR(xk, yk). Finally, I extend a binary relation
R C 2PXD to maps by defining the R relation as: E(ml,mg) iff for all elements o in the
domain of both m; and my, it is the case that R(m1(0), m2(0)). To make the equations
clearer, I drop the tilde and arrow annotations on binary relations when they are clear from
context.

A graph is defined as a tuple g = (N, E,in,out, InEdges, OutEdges) where N C Node
is a set of nodes (with Node being a predefined infinite set), E C FEdge is a set of edges
(with Edges being a predefined infinite set), in : N — E* specifies the input edges for a
node, out : N — E* specifies the output edges for a node, InEdges € E* specifies the input
edges of the graph, and OutFdges € E* specifies the output edges of the graph. I denote

by Graph the set of all graphs. When necessary, I use subscripts to extract the components
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of a graph. For example, if g is a graph, then its nodes are N, its edges are 4, and so on.
For each edge in a graph, there is at most one node that is the source of the edge, and
at most one node that is its destination. Given a graph g and an edge e € E, srcg(e) and

dstg(e) return the source and destination nodes of edge e, if they exist. In particular:

sreg(e) = n iff Jiouty(n)fi] = e
dsty(e) = n iff Jiing(n)[i] = e
Because each edge has at most one source and one destination, there can be at most one ¢
that satisfies each of the above equations.
Given a graph g, an edge e € Ey, and a node n € N, inIndez4(e,n) returns the index in
the array ing(n) that e occupies, and outIndex 4(e, n) returns the index in the array out,(n)

that e occupies. In particular:

inIndexgy(e,n) =1 iff ing(n)[i] = e

outIndex 4(e,n) = i iff outy(n)[i] =e
Here again, because each edge has at most one source and one destination, there can be
at most one 7 that satisfies each of the above equations. Note that srec, dst, inIndex, and

outIndex are all partial functions.
3.3 The intermediate representation

An IL program is represented as a set of procedures, where each procedure is represented
as a control flow graph (CFG), and each node in the CFG represents a statement from the
intermediate language. The CFG is a graph, as defined in Section 3.2. In the case of a
forward analysis, the CFG will be in the forward direction, and in the case of a backward
analysis, the CFG will be in the backward direction, meaning that the direction of the edges
is reversed. Label statements do not appear in the IR — once they have been used to build
the CFG, they are thrown away. Also, there is one additional statement form that can
appear in the IR, but which was not in the grammar of the intermediate language: merge
statements, which are used to represent merge points in the CFG.

Formally, a program is a tuple 7 = (p1,...,pn), where each p; is a procedure, and a pro-

cedure is a tuple p = (name, formal, cfg), where name is the name of the procedure, formal
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is the name of its formal parameter, and cfg is its CFG. Let Prog be the set of all programs,
and Proc the set of all procedures. I sometimes use the sugar proc(name, formal, cfg) to
denote the procedure (name, formal, cfg). 1 also denote by name(p), formal(p) and cfg(p)
the name, formal name, and CFG of a procedure p. I assume that all procedures in a
program have distinct names.

Each node n in the representation of a program has a statement associated with it,
which is denoted by stmtAt(n). Furthermore, each node n belongs to exactly one program,
which is denoted by prog(n). Edges, on the other hand, can be shared between programs,
meaning that an edge can appear in multiple programs.

Given a node n for which stmtAt(n) = (x := f(b)), I assume that there is a procedure
p in prog(n) for which name(p) = f. I use callee(n) to denote this procedure p.

The CFGs discussed thus far are intraprocedural, meaning that the successor of a call
node is the first node in the caller that gets executed after the callee returns. The Rhodium
intermediate representation for a program 7 also contains an interprocedural CFG, denoted
by CFG(m), which is derived from the intraprocedural ones. The interprocedural CFG is
a graph that connects the intraprocedural CFGs together. Each call node is split into two
nodes in the interprocedural CFG: a call node and a return site node. Figure 3.3 shows
the intraprocedural CFGs for a program with three procedures, and Figure 3.4 shows the
corresponding interprocedural CFG. The node ny in Figure 3.3 gets split into nodes no and
ns in Figure 3.4. Given a call node n in the intraprocedural CFG, I use interCallNode(n)
to denote the call node in the interprocedural CFG corresponding to n. In the above
example, this would mean that interCallNode(n1) = na. Also, given a node n, and assuming

7 = prog(n), I use in(n) and out(n) to denote in crg(r)(n) and out cpg () (n)-
3.4 Small-step semantics

In defining the small-step semantics of the Rhodium IR, I assume an infinite set Location of
memory locations, with metavariable [ ranging over the set. I assume that the set Const is
disjoint from Location and contains integers and the distinguished element uninit. I denote
by Z C Const the set of integers, and by N C Z the set of natural numbers, which are

integers greater or equal to 0. I also assume a set Array of array values, disjoint from Const
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procedure f procedure g procedure h

return ...

return ... return ...

Figure 3.3: Example of intraprocedural CFGs for a program with three procedures
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Figure 3.4: The interprocedural CFG for the program in Figure 3.3
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and Location. An array value is a pair (len,locs), where len € N is the length of the array
and locs € (N — Location) is a map from indices to locations. The locations mapped to are
the locations of the array elements. Given an array a, I use len(a) to denote its length, and
locs(a) to denote the addresses of its contents. I use newlInitArray(lo,...,l;) to denote the

array (j + 1, Xi.l;).

The set of values is defined as Value = (Location U Const U Array).

An environment is a partial function p : Var — Location, where Var is the set of
variables in the Rhodium IR; I denote by Environment the set of all environments. A store
is a partial function o : Location — Value; I denote by Store the set of all stores. The
domain of an environment p is denoted dom(p), and similarly for the domain of a store. If
s=(x1,...x,), s € dom(p) denotes that each element of s is in dom(p); similar notation is
defined for a store . The notation p[x — [] denotes the environment identical to p but with
variable x mapping to location I; if © € dom(p), the old mapping for = is shadowed by the
new one. The notation o[l — v] is defined similarly. The notation o[ly — v1,... 1L, — vy]
denotes o[ly — wvi]...[lp, — vu]. Tuse (l1,...,l,) — v to stand for Iy — v,...,l, — v.
Finally, the notation o/{ly,...,l;} denotes the store identical to o except that all pairs

(I,v) € o such that [ € {ly,...,l;} are removed.

The current dynamic call chain is represented by a stack. A stack frame is a triple
f=(n,l,p): Node x Location x Environment. Here n is the CFG node that made the call to
the function currently being executed, [ is the location in which to put the return value from
the call, and p is the current lexical environment at the point of the call. I denote by Frame
the set of all stack frames. A stack € = (f1,..., fi) : Frame™ is a sequence of stack frames,
representing the contents of the stack. I assume a global constant maxzStackDepth € N that
represents the maximum size of the stack. Given a stack & = (fy,..., fi), it is therefore
the case that 0 < i < mazStackDepth, with £ being the empty stack () when i = 0. The
maxStackDepth constant is arbitrary, and as a result the Rhodium system can preserve the

semantics of programs using arbitrarily large stacks. The set of all stacks is denoted by



Stack. Stacks support two operations defined as follows:

push : (Frame x Stack) — Stack

push(f, (f1,..

S f) = (f, f1,--., fi), where 0 < i < mazStackDepth

pop : Stack — (Frame x Stack)

pop((fafl)"'

i) = (f,(f1,---, fi)), where 0 < i < mazxStackDepth
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Note that these two operations are partial: push is not defined in the case of a stack overflow,

and pop is not defined in the case of a stack underflow.

Finally, a memory allocator M is an infinite stream (l1,ls,..

denote the set of all memory allocators as MemAlloc.

.) of distinct locations. I

A state of execution of a program 7 is a four-tuple n = (p,0,§, M) where p €

Environment, o € Store, £ € Stack, and M € MemAlloc. 1 denote the set of program

states by State. I refer to the environment of a state n as env(n), and I similarly define

accessors store, stack, and mem.

In the following definition of the expression evaluation function, the arity of an oper-

ator op is denoted arity(op), and I assume, for each n-ary operator symbol op, a fixed

interpretation function Jop] : Const™ — Const.

Definition 1 The evaluation of an expression e in a program state n, where env(n) = p
and store(n) = o, is given by the partial function n(e) : (State x Expr) — Value defined by:

p(z)
where x € dom(p)
o(p(x))

where x € dom(p), p(x) € dom(o)

a(n(x))

where n(x) € dom(o)

[[Op]] (77(171)7 tee 7n(bn))

where arity(op) =n andV 1 < j <n . (n(b;) € Const)

locs(n(xx))(n(4))
where n(xx) € Array,n(i) € N,0 < n(i) < len(n(*x))

Note that n(e) is partial because of the side conditions in the above definition.
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Each node n in the CFG has a set of input edges and a set of output edges. The vectors
in(n) and out(n) refer to the incoming and outgoing edges of n in the interprocedural CFG.

All statements have one incoming edge and one outgoing edge except for the following cases:

o If stmtAt(n) = merge then len(in(n)) = 2 where in(n)[0] and in(n)[1] are the two
inputs to the merge. Merge nodes with more than two inputs are split into a sequence

of two-input merge nodes.

o If stmtAt(n) = (if b goto Ly else Lo) then len(out(n)) = 2 where out(n)[0] is the

true successor and out(n)[1] is the false successor.

o If stmtAt(n) = (z := f(b)) then len(out(n)) = 2, where out(n)[0] is the intraproce-
dural edge from the call site n to the return site (the immediate successor of n in
the intraprocedural CFG), and out(n)[1] is the interprocedural edge from the call site
n to the entry node of f. The entry node of a function is a merge node. Once the
interprocedural CFG is build, the entry node of a function may have more than two

inputs, and may need to be split into multiple two-input merge nodes.

o If stmtAt(n) = (return x) then len(out(n)) = k where k is the number of call
sites to the function that n belongs to. I define callSiteIndex : Node — N so
that, given a return node n, and a call site n’ to the procedure containing n, then

out(n)[callSiteIndex(n’)] is the edge from n to the return site corresponding to n'.

Definition 2 We use i,n L j,n’ to say that program state n coming along the ith mput
edge of n steps to ' on the j output edge of n. The input and output edges are in the
interprocedural CFG. The state transition function -,- — -,- C N x State x Node x N x State
is defined by:

o If stmtAt(n) = (decl z) then 0,(p,0,& (Lo, l1,...)) = 0,(plz — 1,0l —

uninit], &, (lo, 11, ...))
where | € dom(c)

o If stmtAt(n) = (decl z[i]) then 0,(p,0,&, (1o l1,...,)) = 0,(plz — I],0[l —
newlnitArray(s), s — uninit|, &, (), by@y+1s - - -))
where n = (p,0,&, ({l,lo,11,...,)), L € dom(a), n(i) €N, n(i) >0, s = (lo, .-, ly)-1)s
s & dom(o)
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o If stmtAt(n) = skip then 0, (p, 0,6, M) =0, (p,0,&, M)

o If stmtAt(n) = merge then 0,(p,0,6, M) = 0,(p,0,6&, M) and 1,(p,0,6, M)
07 (p70-7§7M)

o If stmtAt(n) = (x := e) then 0, (p,a,6, M) 5 0, (p, o[n(&x) — n(e)], &, M)
where 1 = (p,0,&, M), n(x) € Location U Const 1, n(e) € Location U Const 2

o If stmtAt(n) = (xz := e) then 0, (p,a,&, M) = 0, (p,a[n(x) = n(e)], & M)
where n = (p,0,§, M), n(x) € Location, n(xx) € Location U Const, n(e) € Location U
Const

o If stmtAt(n) = (x := new) then 0,(p,0,&, (I, 1o,11,...)) = 0,(p,o[n(&x) — 1,1
uninit], &, (lo, 11, . . .))
where n = (p,0,&, (L, 1o, l1,...)), n(z) € Location U Const, | & dom(c)

o If stmtAt(n) = (x := new array[i]) then 0, (p,0,&, (I,1o,11,...)) 2>
0, (p,o[n(&x) = 1,1 — newlInitArray(s), s = uninit], &, Ly, b1 - - -))
where n = (p,0,&,{l,lo,l1,...)), I & dom(o), n(z) € Location U Const, n(i) € N,
n(i) >0, s =(lo, ..., lyu)-1), s & dom(o)

o If stmtAt(n) = (z := p(b)) then 0,(p,0,& (1,1, 01,...)) = 1,{(y,D)},0[l —
n(d)], push(f, &), (lo, 11, )

where n = (p,0.&,{l,lo,l1,...)), y = formal(callee(n)), | & dom(c), f = (n,p(z),p),
n(x) € Location U Const, n(b) € Location U Const

o If stmtAt(n) = (if b goto L, else Ly) then 0, (p,0,6, M) 20, (p, 0,6, M)
where (p,0,§, M)(b) =1

o If stmtAt(n) = (if b goto L; else Ly) then 0, (p,0,&, M) 2> 1,(p,0,&, M)
where (p,0,&, M)(b) = 0

e If stmtAt(n) = (return x) then 0, (p,0,&, M) = 3, (po, 70, &0, M)

where pop(ﬁ) = ((n(]alO,pO),gO); ] = callSz'teInde:r(no), dom(p) = {:E17' .- ?xi}? og =
(c/{p(z1),...,p(xi)Dllo = (p,0,& M)(@)], (p,0,§, M)(x) € Location U Const

1This check, and the ones like it for other statement types, prevent assignments to array values.

2This check, and the ones like it for other statement types, prevent array values from being copied.
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The -,- — -,- relation defined above is a function: given i € N, n € State, n € Node
and j € N, there is at most one 7’ such that 7,7 — j,7. The semantics of the Rhodium
IL is therefore deterministic. Furthermore, because functions such as n(e), push and pop
are partial, and because of the side conditions in the above definition, the -, — - - func-
tion is partial. For example, if 2 has not been declared, meaning that = ¢ dom(p), then
0, (p,0,&, M) cannot step through the statement x := e. As another example, call state-
ments cannot step from a state where the remaining stack size is 0, because the push
operation would not succeed.

A machine configuration is a pair 6 = (e,n) where e € FEdge and n € State. Here
e indicates where control has reached, and 7 represents the program state. 1 denote by

MachineConfig the set of all machine configurations.

Definition 3 Given a program w, the machine configuration transition function —, C
MachineConfig x MachineConfig is defined by:

(e.n) —r (7)) & hon = W ,of
where n = dst cpa(xy(€), h = inlndex cpg(x)(e,n), B = outIndex cpa(x)(e',n)

The —7% relation is the reflexive, transitive closure of the —, relation.

The intraprocedural state transition function < is similar to —, except that it operates

over the intraprocedural CFG.

Definition 4 The intraprocedural state transition function -,- — -,- C N x State x Node x
N x State is defined by:

o [If stmtAt(n) is neither a procedure call nor a return, then i,n < g,
where i,n = j,1'

o If stmtAt(n) = (x := f(b)) then 0,1 <> 0,1
where ™ = prog(n), 0,1 — 1,1, and (out(n)[1],ny) —x ... —x (e,n') is the shortest
trace such that stack(n’) = stack(n)

o If stmtAt(n) = (return z) then 0,1 < 0,7/
where 0,1 2 j, 0 for some j (by the definition of —, there can be at most one such j
if n is given).
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The only part of the semantics that will be used in the rest of this dissertation is the
intraprocedural state transition function < from Definition 4. In particular, the soundness
conditions for propagation and transformation rules will be defined in terms of <. Further-
more, all the theory that is done by hand once will treat the «— function as a black box.
The details of <, and more generally the details of the Rhodium IR semantics, have an
effect solely on the background axioms that the theorem prover uses to discharge soundness

obligations.
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Chapter 4

ANALYSIS FRAMEWORK

Chapter 3 presented the IR over which Rhodium optimizations run. This chapter
presents a generic framework for defining analyses and transformations over this IR. This
framework is used in Chapters 5 and 6 to define the semantics of Rhodium optimizations.
The analysis and transformation framework presented here is based on abstract interpre-
tation [29], and it is adapted from a previous framework for composing dataflow analyses
and transformations [63]. The part of the framework described in this chapter is the core
definition of analyses and transformations, on top of which the composition functionality is
built. By using the composing framework to formalize Rhodium optimizations, the theo-
rems from [63] can be adapted to show that Rhodium analyses and transformations can be

composed soundly, while allowing them to interact in mutually beneficial ways.

4.1 Definition

An analysis is a tuple A = (D,U,M,C, T, L, o, F) where (D,U,M,C, T, 1) is a complete
lattice, o : D, — D is the abstraction function, and F' : Node x D* — D* is the flow
function for nodes. The elements of D, the domain of the analysis, are dataflow facts about
edges in the IR (which correspond to program points in our CFG representation). The flow
function F' provides the interpretation of nodes: given a node and a tuple of input dataflow
values, one per incoming edge to the node, F' produces a tuple of output dataflow values,
one per outgoing edge from the node. D, is the domain of a distinguished analysis, the
concrete analysis C = (D¢, U, Me, Ce, Te, L, id, F,), which specifies the concrete semantics
of the program. The flow function F., which specifies the concrete behavior of IR nodes,
must be monotonic, and it must also be bottom-preserving, meaning that F.(L.) = L.
The concrete analysis is left unspecified by the framework, leaving the choice up to the

client. Various options are available for defining this concrete semantics, including forward
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and backward collecting state semantics, and forward and backward collecting trace se-
mantics. The formalization of forward Rhodium optimizations, given in Chapter 5, uses a
forward collecting state semantics, and the formalization of backward optimizations, given
in Chapter 6, uses a backward collecting state semantics.

Furthermore, the framework requires each abstraction function « to be join-monotonic,
which means that for any chain Y of elements (a sequence of ascending elements) in D., it
is the case that (| |.Y) C [ |[{a(d) | d € Y'}. This property is weaker than the standard
requirement in abstract interpretation that o be continuous, which says that for any chain
Y of elements in D, it is the case that o] |.Y) = [ U{a(d) | d € Y}. The abstraction
function o must also be bottom-preserving, meaning that o(L.) = L.

The solution of an analysis A over a domain D is provided by the function S 4 : Graph x
D* — (Edge — D). Given a graph g and a tuple of abstract values for the input edges of g,
S 4 returns the final abstract value for each edge in g. This is done by initializing all edges
in g to L (except for input edges, which are initialized to the given input values), and then
applying the flow functions of A until a fixed point is reached. A detailed definition of S 4
is in Appendix B.!

The framework described here is intraprocedural in nature, and as a result the formalism
and proofs are simpler if the concrete semantics of a call node skips over the call, rather than
steps into it. To this end, the framework provides a definition of the concrete semantics
of calls that does exactly this. In particular, S¢ is used recursively to solve the callee’s

intraprocedural CFG, and then the result on the outgoing edge is propagated to the caller.

Definition 5 The concrete flow function for a node n for which stmtAt(n) = (z := f(b))
is defined by the framework as:

Fe(n, cs)[0] = calleeToCaller(n, Sc(cfg(callee(n)), 1)(Out Edges qpy(catice(n))))

where v = callerToCallee(n, cs)

In the above definition, the function callerToCallee : Node x D} — D} translates the

concrete information from the caller’s call site to the callee’s entry point, and the function

! Although the concrete solution function S¢ is usually not computable, the mathematical definition of
Sc is still perfectly valid. Our framework does not evaluate Sc; I use Sc¢ only to formalize the soundness
of analyses.
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callerToCallee : Node x D} — D} transforms the concrete information from the caller’s
return statement to the callee’s return site. These functions must be defined by the client of
the framework, along with the concrete analysis C. The framework requires callerToCallee
and calleeToCaller to have two properties: (1) they cannot depend on any property of the
node at which they are evaluated, except for the statement at that node, and (2) they
must be monotonic in their second argument. Formally, this is stated in the following four

conditions:

V(n,n’,cs) € Node x Node x D} .

(4.1)
stmtAt(n) = stmtAt(n’) = callerToCallee(n, cs) = callerToCallee(n’, cs)
V(n,n’,cs) € Node x Node x D} . (4.2)
stmtAt(n) = stmtAt(n’) = calleeToCaller(n,cs) = calleeToCaller(n’, cs)
V(n,cs1,cs2) € Node x D} x D . (4.3)
cs1 Ce csg = callerToCallee(n, csy) E. callerToCallee(n, csg)
V(n,cs1,cs2) € Node x D} x D . (4.4)

cs1 Cc ¢sg = calleeToCaller(n,csy) C. calleeToCaller(n, csg)

An Analysis followed by Transformations, or an AT-analysis for short, is a pair (A, R)
where A = (D,U,N,C, T, L, a, F) is an analysis, and R : Node x D* — Graph U {e} is a
local replacement function. The local replacement function R specifies how a node should be
transformed after the analysis has been solved. Given a node n and a tuple of elements of
D representing the final dataflow analysis solution for the input edges of n, R either returns
a graph with which to replace n, or € to indicate that no transformation should be applied
to this node. To be syntactically valid, a replacement graph must have the same number
of input and output edges as the node it replaces, and its nodes and edges must be unique
(so that splicing a replacement graph into the enclosing graph does not cause conflicts). I
denote by RFp the set of all replacement functions over the domain D, or in other words
RFp = Node x D* — Graph U {e}.

After analysis completes, the intermediate representation is transformed in a separate
pass by a transformation function T : RFp X Graph x (Edge — D) — Graph. Given a

replacement function R, a graph g, and the final dataflow analysis solution, 7" replaces each



67

node in g with the graph returned by R for that node, thus producing a new graph. Since
nodes cannot be shared across programs (because otherwise the prog function would be
ill-defined), the graph returned by T cannot contain nodes from the input graph g. To this
end, nodes in replacement graphs are required to be fresh, and the T" function must create
a fresh copy of nodes for which R returned e. A detailed definition of T" can be found in
Appendix B.

Finally, the effect of an AT-analysis (.4, R) on a program is given by the function [A, R] :
Prog — Prog defined as follows, where the last condition defines the prog field for nodes in

the transformed program 7’:

Definition 6 If 7 = (p1,...,pn) then [A, R](7) = «’ where:

™ = (P 0n)

p; = proc(name(p;), formal(p;),r;) fori € [l..n]
ri, = T(R,gi,S4(gi,T)) fori € [1..n]
9 = cfg(p:) for i € [1.n]
T = top element of the lattice of A

Vn € N, . prog(n) =’ fori € [l.n]

4.2 Soundness

An AT-analysis (A, R) is sound if each CFG produced by (A, R) has the same concrete
semantics as the corresponding original CFG. This is formalized in the following definition

of soundness of (A, R):

Definition 7 Let (A, R) be an AT-analysis, let m = (p1,...,pn) be a program where g; =
cfg(pi), and let [A, R](7) = «" where n’ = (p),...,p},) and r; = cfg(p}). We say that (A, R)
s sound iff:

—_— —_——
Vi € [1.n] . Vic € D. . Se(gi, te)(OutEdgesg,) T Sc(ri, te)(OutEdges,,)

The above definition of soundness does not require the concrete semantics to be exactly
preserved. Rather, the original and the transformed concrete semantics must be related by
C.. In general, it is well understood that proving exact preservation of semantics is not
always practical. Indeed, compilers may want to transform code in ways that preserve the

behavior of correct programs, but not necessarily incorrect programs. As a simple example,
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some compilers will remove an assignment x := xy if x is never used afterward, even though
this changes the behavior of the program if y happens to be null. The standard way of
addressing this issue is to use a refinement relation £, to determine when an original
program is correctly “implemented” by a transformed program.

For the definition of soundness of an AT-analysis, I have chosen this refinement relation
to be C., and as a result, the optimizer is required only to preserve the behavior of runs that
don’t get stuck. For example, if the original program contained a statement x := xy that
would get stuck on some runs (because of y being null), the optimizer would be allowed to
remove this statement, thus producing a program that gets stuck less often. On the other
hand, the C. refinement relation requires executions that don’t get stuck to be preserved,
and so the optimizer would not be allowed to transform a program in a way that makes
it stuck more often. Another way of understanding this stems from the fact that, when a
statement is stuck in a program state, its semantics is unspecified in that program state.
As a result, the C. refinement relation is simply stating that optimizations must preserve
the semantics of runs whose semantics is specified.

Similarly to C, the semantics of the current Rhodium IL is underspecified, meaning that
some executions get stuck. However, the degree to which the semantics of the Rhodium IL
is specified (or unspecified) only affects the definition of the IL semantics, namely the —
relation from Section 3.4. Since the IL semantics is treated as a black box, the Rhodium
system can easily be adapted to model programming languages whose semantics are more
or less specified. For example, to model a programming language like Java where a null
pointer dereference creates an exception that must be preserved by the optimizer, one only
needs to change the semantics of the IL so that a null pointer dereference produces a special
error value instead of getting stuck. The semantics of dereferencing a null pointer would
then be specified, as opposed to unspecified, and would therefore have to be preserved by
the optimizer.

I define here two conditions that together are sufficient to show that an AT-analysis
(A, R) is sound. First, the flow function of .4 must be sound according to the following
definition:

Definition 8 Given an analysis A = (Do, U,1N,C, T, L, o, F,), we say that its flow function
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F, is sound iff it satisfies the following property:

V(n,cs,ds) € Node x D} x D .

_ - (4.5)
a(es) Cds = d(Fy(n,cs)) C Fy(n,ds)

Informally, this states that if some abstract fact ds approximates some concrete fact cs,
then the result of applying F' to ds should approximate the result of applying F, to cs. If
the flow function of an analysis A is sound, then it is possible to show that A is sound,
meaning that its solution conservatively approximates the solution of the concrete analysis
C. This is formalized by the following definition and theorem, the latter of which is proved
in Appendix B.

Definition 9 We say that an analysis A = (Dg,U,1,C, T, L, «, Fy) is sound iff:

Y(g,teyta) € Graph x D} x D7.
a)(l’c) L tqg = &(Sc(g, Lc)) L SA(Q, La)

Theorem 4 If the flow function of an analysis A is sound then A is sound.

Property (4.5) is sufficient for proving Theorem 4. Moreover it is weaker than the local

consistency property of Cousot and Cousot (property 6.5 in [29]), which is:

V(n,cs,ds) € Node x D} x D;.
@ (Fu(n,cs)) C Fy(n, @(cs))

Indeed, the above property and the monotonicity of F, imply property (4.5). I use the
weaker condition (4.5) because in this way the formalization of soundness does not depend
on the monotonicity of F,,. Although the flow function induced by a set of Rhodium rules is
guaranteed to be monotonic (as discussed in Section 2.1.3), when the framework presented
here is used for composing program analyses and transformations (as shown in [63]), the
flow function F} is in fact generated by the framework, and reasoning about its monotonicity
requires additional effort on the part of the analysis writer (see Sections 5 and 6 of [63]).
By decoupling the soundness result from the monotonicity of F,, it is therefore possible to

guarantee soundness even if F, has not been shown to be monotonic.?

2Termination in the face of a non-monotonic flow function generated by the composing framework is
discussed in Section 4.3 of [63].
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In addition to the analysis’s flow function having to be sound, R must produce graph
replacements that are semantics-preserving. This is formalized by requiring that the re-

placement function R be sound according to the following definition:

Definition 10 We say that a replacement function R in (A, R) is sound iff it satisfies the
following property, where A = (Dg,U,,C, T, L a, Fy):

V(n,ds, g) € Node x D} x Graph.
R(n,ds) =g =
[Ves € D (es) C ds = (46)
Fe(n,cs) Cc Se(g, es)(OutEdgesg))
Property (4.6) requires that if R decides to replace a node n with a graph ¢ on the basis
of some analysis result ds, then for all possible input tuples of concrete values consistent
with ds, if evaluation of n on these inputs succeeds, then it must be the case that n and ¢
compute exactly the same output tuple of concrete values. It is not required that n and g
produce the same output for all possible inputs, just those consistent with ds. For example,
if A determines that all stores coming into a node n will always assign some variable x a
value between 1 and 100 then n and g are not required to produce the same output for any
store in which x is assigned a value outside of this range.

If both the flow function and the replacement function of an AT-analysis are sound, then
it is possible to show that the AT-analysis is sound, meaning that the final graph it produces

has the same concrete behavior as the original graph, whenever evaluation of the original

graph succeeds. This is stated in the following theorem, which is proved in Appendix B:
Theorem 5 Given an AT-analysis (A, R), where A = (D,,U,N,C, T, L o, F,), if F, and
R are sound, then (A, R) is sound.

One important property of the analysis framework presented here is that, if the replace-
ment function R is sound, then the selected transformations do not interfere with each
other — it is sound to perform all of them in parallel. This allows multiple transformations
to be performed without having to reanalyze the program after each transformation. The
framework has an even stronger property, called subset-soundness, which is that any sub-
set of the selected transformations can be performed soundly. Intuitively, subset-soundness

follows from the fact that the soundness condition (4.6) requires R to preserve semantics
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only when it returns a non-e value. Therefore, returning ¢ more often (which corresponds
to selecting a subset of the transformations) preserves the soundness of R. In Rhodium’s
predecessor, Cobalt [64], subset-soundness was essential to making Cobalt’s profitability
heuristics work (see [64] for more details on Cobalt’s profitability heuristics). Rhodium’s
way of expressing profitability heuristics, however, does not require the subset-soundness
property, even though the framework provides it nonetheless.

The diagram in Figure 4.1 displays the connections among the various lemmas and
theorems of this dissertation. Each rectangular box in the diagram represents a predicate,
with inner boxes representing sub-predicates. For example, the large box in the middle of
the diagram represents the predicate “F' is sound and R is sound”. Arrows between boxes
represent logical implication, and labels on arrows, combined with the legend at the bottom
of the figure, indicate what lemma or theorem states the implication.

The diagram in Figure 4.1 is split into two parts, separated by a dashed line: the bottom
part refers to predicates and theorems stating properties of the generic analysis framework
presented in this section; the top part, which will be covered in more detail in Chapters 5
and 6, refers to predicates and theorems specific to the Rhodium system.

Some lemmas and theorems in the legend are labeled “Forward”, “Backward” or “Infor-
mal”, to distinguish between various versions of the same lemma or theorem. “Informal”
refers to the informal lemmas and theorems used in the overview of the Rhodium soundness
checker from Section 2.2. “Forward” refers to a forward version of the lemma or theorem,
which applies only to forward optimizations, and “Backward” refers to a backward version,

which applies only to backward optimizations.
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All prop
rules sound

All trans
rules sound

Rhodium @

Framework

= (A, R) correct

Y

A correct

@ Informal: Theorem 1 (Section 2.2.1)

Theorem 4 (Section 4.2)

(2) Theorem 5 (Section 4.2)

Informal: Lemma 1 (Section 2.2.1)
(3) Forward: Lemma 3 (Section 5.4.3)
Backward: Lemma 6 (Section 6.3.3)

@ Forward: Lemma 4 (Section 5.4.3)
Backward: Lemma 7 (Section 6.3.3)

Informal: Theorem 2 (Section 2.2.1)
(5 Forward: Theorem 8 (Section 5.4.3)
Backward: Theorem 10 (Section 6.3.3)

Informal: Theorem 3 (Section 2.2.2)
(6) Forward: Theorem 7 (Section 5.4.3)
Backward: Theorem 9 (Section 6.3.3)

(Or equivalently,
Rhodium opt O
correct,)

Figure 4.1: Connections among the various lemmas and theorems of this dissertation
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Chapter 5

FORWARD RHODIUM OPTIMIZATIONS

This chapter presents the formal details of how forward Rhodium optimizations are
checked for soundness. To define soundness, one must first define the concrete semantics that
optimizations must preserve. This concrete semantics is presented in Section 5.2. One must
also have a precise definition of how Rhodium optimizations run. To this end, the formal
semantics of forward Rhodium optimizations is given in Section 5.3. Finally, Section 5.4
describes the details of how the soundness checker works. In particular, it presents formal
versions of the local soundness conditions (prop-sound) and (trans-sound), and also shows
how these conditions are formalized inside the theorem prover. Before going into all these
details, the chapter begins in Section 5.1 with a formal definition of the Rhodium syntax,

which will make later parts of the chapter easier to understand.

5.1 Rhodium Syntax

The grammar of the full Rhodium language (not just the forward subset) is given in Fig-
ures 5.1 and 5.2. T use Fx to represent zero or more repetitions of £, and F/X to represent
zero or more repetitions of E separated by X. Non-terminals are in written in italics font,
and terminals are written either in typewriter font or boldface font. The non-terminals
Stmt and Ezpr refer to statements and expression of the extended intermediate language,
which augments the intermediate language from Figure 3.1 with Rhodium variables. In par-
ticular, each production in the grammar of the original intermediate language is extended
with a case for a Rhodium variable, as shown in Figure 5.3. The extended intermediate
language therefore includes such statements as X := A OP B, where X, A, OP and B are
Rhodium variables ranging over pieces of syntax of the intermediate language. The extended
intermediate language also contains the special merge statement, so that programmers can

write user-defined merge operations. Finally, the extended intermediate language does not
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RhodiumProg

Decl

VarDecls

FEdgeFactDecl

VirtualEdgeFactDecl

NodeFactDecl
VarDecl

Meaning

Meaning Term

MeaningPredSymbol

Meaning FunSymbol

PropagateRule

TransformRule

Decl*

VarDecls | EdgeFactDecl | VirtualEdgeFactDecl
NodeFactDecl | PropagateRule | TransformRule

decl VarDecl/, in Decl x end

define forward edge fact id ( VarDecl/, )
with meaning Meaning

define backward edge fact id ( VarDecl/, )
with meaning Meaning

define virtual edge fact
id ( VarDecl/, ) @RhodiumVar = 1)

define node fact id ( VarDecl/, ) =
RhodiumVar : T

true |false|! Meaning | Meaning || Meaning

Meaning && Meaning | Meaning => Meaning

forall VarDecl/, . Meaning | exists VarDecl/, . Meaning
MeaningTerm == MeaningTerm

MeaningTerm '= MeaningTerm

MeaningPredSymbol ( MeaningTerm/, )

Ezpr | Stmt | eta|eta_l|eta2
MeaningFunSymbol ( MeaningTerm/, )

isStmtNotStuck | isExprNotStuck | isLoc
isConst | equalUpTo

evalExpr | newConst | getConst | applyUnaryOp
applyBinaryOp | min | max

if ¢ then FEdgePred

if ¢ then transform to Stmt

Figure 5.1: Rhodium syntax (continued in Figure 5.2)



NodePred
EdgePred

Term

PrimFunSymbol
Edge

Edgelndex
Rhodium Var

d

T

()

true |false|! ¢ |y || Y| && Y| =>¢
forall VarDecl/, . ¢ | exists VarDecl/, . 1

Term == Term | Term '= Term | EdgePred | NodePred

case Term of (Term => 1) * endcase
id ( Term/, )
id ( Term/, ) @QFEdge

Ezxpr | Stmt | currStmt | currNode
PrimFunSymbol ( Term/, )

newConst | getConst | applyUnaryOp | applyBinaryOp | min | max
in | out | in [ Edgelndex | | out [ Edgelndex ]

IntLiteral | true | false

id

identifiers

Stmt | Expr | CallExpr | NonCallExpr | LHSExpr | BaseExpr
Const | Var | Deref | Ref | Fun | Label | UnaryOp | BinaryOp
Edge | HeapSummary | CFGNode | Loc

Figure 5.2: Rhodium syntax (continued from Figure 5.1)

Stmit

FExpr
BaseEzpr
Constant
ILVar
ProcName
Label

OP

. (minus label statement form) | RhodiumVar | merge
.. | Rhodium Var
.. | RhodiumVar
.. | Rhodium Var
.. | Rhodium Var
.. | RhodiumVar
.. | RhodiumVar
. | Rhodium Var

Figure 5.3: Rhodium extended intermediate language, as an extension to the grammar from

Figure 3.1
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contain label statements, since these statements have already been removed from the CFG.

Precedence for logical operators is as follows (from most binding to least binding): nega-
tion (!), binary logical operators (|1, &&, =>), quantifiers (exists, forall) and case ex-
pressions. Unlike in standard logic, all binary logical operators in Rhodium associate to
the left. Thus, a || b && c associates as (a || b) && c. Programmers can insert brackets
to override the default associativity. The bracket syntax is not shown in the grammar — I
assume that these brackets are just used by the parser to determine which parse tree of the

unbracketed grammar to generate.

The type 7 of a Rhodium variable indicates what the variable ranges over. There are a
variety of types that range over ASTs of the C-like Rhodium intermediate language, includ-
ing statements (Stmt), various expression forms (Expr, CallExpr, NonCallExpr, LHSExpr,
BaseExpr, Const, Var, Deref, Ref), function names (Fun), labels (Label), unary operators
(UnaryOp), and binary operators (BinaryOp). The type Edge is used for Rhodium variables
ranging over edge names — these variables are used in virtual edge fact declarations. The
HeapSummary type ranges over heap summaries', and the CFGNode type ranges over nodes
in the CFG (the currNode term is of type CFGNode). Finally, the Loc type ranges over
locations in the store. The Rhodium system performs some simple typechecking to make

sure that edge facts, node facts, and primitives are used in type-correct ways.

Figures 5.1 and 5.2 present the syntax that will be used in the formal details of Chapters 5
and 6. The syntax implemented in the Rhodium system is slightly different from the one
in Figures 5.1 and 5.2 — the real syntax has a few additions for making parsing easier.
Furthermore, the snippets of code presented in figures of this dissertation have used (and
will continue to use) a few simple aesthetic sugars. In particular, I use math symbols
rather than text, for example A instead of &%, V instead of ||, = instead of =>, and 7

instead of eta; I use mathematical sugars for some primitives, for example n(E) instead

'The heap summary type is defined by the user with a dynamic semantics extension (see Section 2.4),
and so in theory it should not appear in the Rhodium syntax. However, dynamic semantic extensions are
currently expressed using the primitive language of Simplify, and as a result the Rhodium typechecker,
which makes sure that fact parameters have the right type, is not aware of such user-defined types. As a
temporary solution until the parser for semantic extensions is written, I have included the HeapSummary
type in the syntax of Rhodium.
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of evalExpr(eta, E), and 71/X = n2/X instead of equalUpTo(X,eta_1,eta 2);? finally, I

sometimes use a different font, for example, in and out instead of in and out.
5.2 Concrete semantics

To instantiate the analysis framework from Chapter 4, one must specify the concrete analy-
sis C, which defines the IR semantics that optimizations are meant to preserve. For forward
optimizations, I have chosen this concrete semantics to be a forward state collecting seman-
tics. This means that the concrete analysis computes, for each edge in a procedure’s CFG,
the set of states that the procedure can be in at that edge, given some initial set of states
at the beginning of the procedure. The concrete flow function simply steps all incoming
program states using the intraprocedural step function < (from Definition 4). These ideas

are made precise in the following definition of the forward concrete analysis:

Definition 11 (forward concrete analysis) The forward concrete analysis C =
(DeyUe, Moy Eey Tey Leyid, Fr) is defined by:

(De, Ue, M, B, T, Le) = (2598 U, N, C, State, )

and
F.(n,cs)[h) = {n | 30 € State,i €N . [ € es[i] A i, < h,n)} (5.1)

The choice of a state collecting semantics has implications with respect to the guarantees
that the Rhodium system provides. The state collecting semantics computes set of states
at each edge, ignoring the order in which they are executed. In theory, this allows for
flexibility in reordering executions. For example, on inputs that do not cause the execution
to get stuck or to loop forever, the state collecting semantics guarantees that the input-
state-to-output-state behavior of the procedure is preserved, even if at internal edges in the
procedure, the order in which states are executed has changed. Unfortunately, for inputs
that cause the original procedure not to terminate, the state collection semantics may not
provide a strong enough guarantee. For example, if a procedure has an infinite loop, a

state collecting semantics would allow iterations of the loop to be re-ordered, which may

2The interpretation of m/X = n2/X as a meaning for a backward fact schema will be explained in
Section 6.2.3.
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or may not be appropriate. In the context of the Rhodium system, one could provide a
stronger guarantee for infinite runs by adopting a trace collecting semantics. The soundness
conditions for propagation and transformation rules would remain the same, but the proofs
that are done by hand would have to be updated to take the new concrete semantics into
account.

Along with the concrete analysis, one must also specify the callerToCallee and
callee ToCaller functions, which are used by the framework to define the concrete flow func-

tion for call nodes. For the forward case, these two functions are defined as follows:?

Definition 12 (forward callerToCallee) The forward version of callerToCallee is defined
by:

callerToCallee(n,cs)[0] = {n | 3 n' € State . [y € cs[0] A 0,7 = 1,1]}

where cn = interCallNode(n)

Definition 13 (forward calleeToCaller) The forward version of calleeToCaller is defined
by:
calleeToCaller(n, cs) = cs

It is easy to see from the above definitions that callee ToCaller and callerToCallee satisfy
requirements (4.1), (4.2), (4.3), and (4.4).
As shown in Definition 5 of Section 4.1, the framework has already defined the concrete

flow function for call nodes as follows:

Fe(n, cs)[0] = calleeToCaller(n, Sc(cfg(callee(n)), 1)(Out Edges oy (cattce(n)))) (5.2)

where ¢ = callerToCallee(n, cs)
The concrete forward flow function defined in (5.1) computes the same information as the
one in (5.2) at call nodes. Indeed, Equation (5.1) says that the set of states after a call node
is computed by taking the union over all incoming states of the resulting outgoing state.
Equation (5.2) describes the same computation, except that it uses the collecting semantics

of the callee to determine the set of all outgoing states.

3Recall that callerToCallee and calleeToCaller get evaluated only on call nodes in the intraprocedural
CFG, and that interCallNode returns the interprocedural call node corresponding to an intraprocedural
call node (see Section 3.3 and Figures 3.4 and 3.3)
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5.3 Rhodium semantics

This section presents the semantics of a forward Rhodium optimization O, which is an opti-
mization containing only forward propagation and transformation rules. The semantics of O
is defined using an associated AT-analysis (Ao, Ro), where Ap = (D,U,M,C, T, L, Fp,a).
I first define the lattice (D, U, M, C, T, L) over which the analysis runs, followed by the flow
function Fp, the abstraction function «, and finally the replacement function Ro.

In the remainder of this chapter, I fix the forward Rhodium optimization O whose
semantics is being defined. I also assume that all node facts and virtual edge facts in O have
been macro-expanded away. In particular, each occurrence of a node fact or virtual edge fact
is replaced by an instance of its defining body, with formals replaced by actual parameters.
Furthermore, I use EdgeFact to denote the set of edge-fact schema names declared in O, 1
use arity(EF) to denote the number of arguments to a fact schema EF € FEdgeFact,, and
I use r € O to say that rule r appears in O. For example, (if ¢ then ¢) € O says that O
contains the propagation rule if ¢ then ¢. Finally, I assume that the edge names in and

out have been desugared in the manner described in Appendix A.

5.8.1 Lattice

The forward Rhodium AT-analysis runs over the power-set lattice of all Rhodium forward
facts. An element of this lattice is a set of facts, and elements are ordered using the subset
relation. The most precise element (L) is the full set of facts, and the most conservative
element (T) is the empty set. This lattice is formalized in the following definition, where
GroundTerm is the set of all terms that do not contain Rhodium variables, primitives,

currStmt, or currNode:

Definition 14 (lattice for forward AT-analysis) The lattice of (Ao, Ro) is:
(D,U,M,C, T, 1) = (275 N, U, D, 0, Facts)
where

Facts = {EF(t1,...,t;) | EF € EdgeFacty N i = arity(EF) A (t1,...,t;) € GroundTerm'}
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5.8.2  Flow function

The flow function Fp : Node x D* — D* uses the propagation rules from O to determine
what outgoing facts to return. In particular, Fp(n,ds) finds all propagation rules that

trigger at node n given incoming facts ds, and returns the facts propagated by those rules:

Definition 15 (forward flow function) The flow function Fo of (Ao, Ro) is defined by:

Fo(n, ds)[h] = {H(EF(tl, ce ,ti)) | (if 1) then EF(tl, R ,ti)@out[h}) €O A

W16, ds, n)} (53)

In the above definition, 6 is a substitution mapping Rhodium variables to ground terms.
I use Subst to represent the set of all substitutions, 6(-) to represent substitution application,
and O[x — y| to represent the substitution identical to 6, but with z mapping to y.

The meaning of the antecedent 1) of a forward rule is given by a function [¢] : Subst x
D* x Node — bool. Intuitively, [¢](0,ds,n) is true iff 8(1)) holds at node n, given incoming

facts ds. The following definition makes this notion precise:

Definition 16 The meaning function [¢] : Subst x D* x Node — bool for the antecedent
Y of a forward rule is defined as follows:

[true](0,ds,n) = true

[false](6,ds,n) = false

[' (6, ds,n) = ~[¥](0,ds, n)

[ [| 421(0,ds, n) = [al(0,ds,n) v [12](0, ds,n)
[t1 && o](6,ds, n) = [1](0,ds,n) A [12] (0, ds,n)
11 => ¥2](0,ds,n) = [v1](0,ds,n) = [v2](8,ds,n)
[forall X : 7. ¥](0,ds,n) = Vt:7. [¢](0[X — t],ds,n)
[exists X : 7. ¢](0,ds,n) = 3Jt:7. [W](O[X — t],ds,n)
[tr == t2(6, ds,n) = [t](8,n) = [t (6,7)

[t1 ! = £2](0, ds,n) = [t1l(0,n) # [t2] (6, n)

[EF(ty, ... t:)Qin[A]](0,ds,n) = EF([t:](8,n),...,[t](0,n)) € ds[h]

where the semantics of a term t at a node n under substitution 0 is given by the function
[t] : Subst x Node — Term, which is defined as follows (where each primitive function f
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has a meaning [f] given in Definition 17):

[currStmt](f,n) = stmtAt(n)
[currNode](#,n) = n
[Ezpr](6,n) = O(Ezpr)
[Stmt] (0, n) = 0(Stmt)

[f (s t)](0,n) = [fI([E],n), ..., [t:](0,n))
Definition 17 The meaning of primitive function symbols is given by:
[evalExpr] : State x Expr — Value
[evalExpr](n,e) = n(e)
[newConst] : Z — Ezpr

[newConst] (i) = literal representing integer i

[getConst] : Expr — Z

[getConst](e) = integer value of integer literal e
[applyUnary0p] : UnaryOp x Const — Const
[applyUnary0p] (op,a) = [op](a)

[applyBinary0p] : BinaryOp x Const x Const — Const
[applyBinaryOp](op,a,b) = [op](a,b)

[min] : Z X Z — 7Z

[min](a,b) =a ifa<b

[min](a,b) =b otherwise

[max] : Z X Z — 7
[max](a,b) =a ifa>b

[max](a,b) =b otherwise

Section 2.1.3 described how Rhodium disallows negated edge facts, and as a result, the
flow function induced by a set of Rhodium propagation rules is guaranteed to be monotonic.
This is formalized in the following theorem about the monotonicity of Fp:

Theorem 6 (monotonicity of Fp) If the syntactic form 11 => 1) is disallowed, and the

syntactic form 1 is allowed only if ¢ is an equality (i.e. t1 == t3), or an inequality (i.e.
t1 '= t9) then Fo is monotonic.

Theorem 6, a proof of which is given in Appendix C, can be used to implement a

simple syntactic check that guarantees the monotonicity of Fp. For each rule, transform
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the antecedent as follows: convert 1)1 => )9 to 91 || 9, and then push all the negations
through conjunctions, disjunctions, existentials, and universals (in the standard way, using
DeMorgan’s law). If after this conversion all the antecedents are in the form required by

Theorem 6, then F is guaranteed to be monotonic.

5.3.3 Abstraction

The abstraction function « : D, — D maps an element ¢ of the concrete domain to the most
precise element d of the abstract domain that conservatively approximates c. The meaning
declarations provided by the Rhodium programmer implicitly define this abstraction func-
tion. In particular, given a set ¢ of stores, a(c) returns the set of facts whose meanings hold

of all stores in ¢. This is formalized in the following definition:

Definition 18 (forward abstraction function) The forward abstraction function « :
D. — D is defined as:

a(ns) = {EF(t1,...,t;) | EF € EdgeFacty Ni = arity(EF) A
(t1,...,t;) € GroundTerm® A (5.4)
vnens . [EF](ty, ... ti,n)}

In the above definition, [EF] stands for the meaning of fact schema EF, as defined

below:

Definition 19 The meaning of a forward-edge-fact-schema declaration:
define forward edge fact EF(X; : 1q,...,X; : 7;) with meaning M
is given by [EF] : 11 X ... X 7; X State — bool and is defined as:
[EF](t1, ... tin) = [0(M)](n)

where 0 = [ X1 +— t1,..., X; — t;], (M) applies the substitution 6 to M, and [M] : State —
bool evaluates the meaning predicate M on a given program state.

Definition 20 The evaluation function [M] : State — bool for a meaning predicate M
is defined as follows (where each primitive predicate p has a meaning [p] given in Defini-
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tion 21):

[true](n) = true

[false](n) = false

[t M](n) = ~[M](n)

[My || M2 (n) = [Mi](n) v [M2](n)

[M; && Ms](n) = [Mi](n) A [M2](n)

[My => M,](n) = [Mi](n) = [Ma](n)
[forall X : 7. M](n) = Vt:7. [[X —t|(M)](n)
[exists X : 7. M](n) = Ft:7. [[X —t](M)](n)
[t1 == t2](n) = [tal(n) = [t2](n)

[t1 ! = t2](n) = [tal(n) # [t2](n)

[p(t1, ... t)])(n) = [pI(Tt:] (), - -, [£D ()

where the semantics of a term t is defined as (where each primitive function f has a meaning
[f] given in Definition 17):

[eta](n) =
[Ezpr](n) = Ezpr
[Stmt](n) = Stmt

[t t)ln) = LACTED (), - - TED ()

There are no cases for terms 1 or 79 in the above definition of [[t], since these two terms

can only appear in the meaning of backward fact schemas.

Definition 21 The meaning of primitive predicate symbols is given by (where
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numlInEdges(s) returns the number of input edges of a statement s):

[isStmtNotStuck] : State x Stmt — bool
[isStmtNotStuck](n,s) =
Vn € Node,h € [0 .. numInEdges(s) — 1] .
[stmtAt(n) = s] = [El(h’,n’) € N x State . h,n — h',n
[isExprNotStuck] : State x Expr — bool
[isExprNotStuck](n,e) = Jv € Value . n(e) =v

[isLoc] : Value — bool
[isLoc](v) = v € Loc

[isConst] : Value — bool
[isConst](v) = v € Const

[equalUpTo] : Var x State x State — bool

[equalUpTo](z, (p1,01,&1, M1), (p2, 02,82, M2)) =
p1=paNEL=EANMp =My AV € Loc . [p1(x) #1] = o1(l) = o2(1)

The forward abstraction function is join-monotonic, as required by the analysis frame-

work from Chapter 4. This is stated in the following lemma, which is proved in Appendix C:

Lemma 2 The forward abstraction function o from Definition 18 is join-monotonic.

5.8.4 Replacement function

The replacement function Rp : Node x D* — GraphU{e} uses the transformation rules from
O to determine whether or not to perform a transformation. In particular, Ro(n, ds) returns
a replacement graph if there is a transformation rule that triggers at node n given incoming
facts ds, where the replacement graph contains a single node representing the transformed
statement from the rule.? If no transformation rules trigger, then Rp(n,ds) returns e. If
more than one transformation rule triggers, then Ro(n,ds) nondeterministically chooses

one of the transformations to return. This is formalized in the following definition:

Definition 22 (forward replacement function) The replacement function Ro of

“The replacement graph contains a single node even if the transformed statement is a conditional. Con-
ditionals in the Rhodium IL do not contain sub-statements — they are simply guarded goto statements. A
conditional is therefore represented in the CFG using a single branch node that has two successors.
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(Ao, Ro) is defined by:

. .| (if ¢ then transform to s) € O A
singleNodeGraph(n,0(s)) if
Ro(n, dS) = [[7/}]] (97 ds? n)
€ otherwise
(5.5)
where singleNodeGraph(n,s) creates a sub-graph with a single node n' that satisfies
stmtAt(n') = s and that has as many input and output edges as n.

5.4 Soundness checker

The Rhodium soundness checker uses a theorem prover to discharge a local soundness
condition for each propagation and transformation rule. These conditions have already

been presented informally in Section 2.2. I now present these conditions formally.

5.4.1 Propagation rules

Definition 23 A forward propagation rule if 1) then EF(tq,...,t;)@Qout[h’] is said to be
sound iff the following condition holds:

V(n,nm, 1, h,ds,0) € Node x State x State x N x D* x Subst.
[4](8,ds,n) A
hyn < by A = [EBF)(0(t1),...,0(t:),n)
allMeaningsHold (ds[h],n)

(fwd-prop-sound)

where allMeaningsHold is defined as follows:

allMeaningsHold(d,n) £ Y(EF,(ti,...,t;)) € EdgeFacty x GroundTerm'.
EF(tl, e ,ti) €d= [[EF]](tl, R 7ti777)

Intuitively, the above condition says the following. Suppose the given propagation rule
fires at a node n on some incoming facts ds. Then, for every index h into ds and for every
program state 7 such that (1)  on input edge h steps through n to 1’ on output edge h’
and (2) the meanings of all the dataflow facts in ds[h] hold of 7, it should be the case that

the meaning of the propagated dataflow fact holds of n’.
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5.4.2  Transformation rules

Definition 24 A forward transformation rule if ¢ then transform to s is said to be
sound iff the following condition holds:

V(n,n',n,n',h,h ds,0) € Node x Node x State x State x N x N x D* x Subst.
[¥](0,ds,n) A
LN ,
h,n <= R'\n" A - h,n‘n—>h/,77/
stmtAt(n') = 0(s) A
allMeaningsHold (ds[h],n)
(fwd-trans-sound)

Intuitively, the above condition says the following. Suppose the given transformation
rule fires at a node n on some incoming facts ds. Then, for every index h into ds and for
every program state 7 such that (1) 7 on input edge h steps through n to n’ on output edge
h' and (2) the meanings of all the dataflow facts in ds[h] hold of 7, it should be the case

that 1 on edge h also steps to 1’ on edge h' through the transformed node n’.

5.4.8 Soundness of the approach

The Rhodium strategy for checking soundness uses a theorem prover to dis-
charge (fwd-prop-sound) and (fwd-trans-sound). For this strategy to be correct, it must
be shown that if conditions (fwd-prop-sound) and (fwd-trans-sound) hold for all propaga-
tion rules and transformation rules of an optimization O, then the optimization O is sound.
This is formalized in the following definition and theorem:

Definition 25 We say that a forward Rhodium optimization O is sound iff (Ao, Ro) is
sound (according to Definition 7).

Theorem 7 (main forward soundness) If all propagation rules and transformation
rules in a forward Rhodium optimization O are sound, then O is sound.

Theorem 7 follows trivially from the following two lemmas, which are proven in Appendix C,

and Theorem 5:

Lemma 3 If all propagation rules in a forward Rhodium optimization O are sound then
Fo as defined in (5.3) is sound.
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Lemma 4 If all transformation rules in a forward Rhodium program O are sound, then Ro
as defined in (5.5) is sound.

Furthermore, if all propagation rules of O are sound, then the induced analysis Ao is
guaranteed to be sound, which can be useful if the computed facts are used for purposes
other than optimizations. This is stated in the following theorem, which follows trivially
from Lemma 3 and Theorem 4.

Theorem 8 (forward analysis soundness) If all propagation rules in a forward
Rhodium optimization O are sound, then the analysis Ao is sound.
The above four theorems and lemmas (Theorems 7 and 8, and Lemmas 3 and 4) all

appear in Figure 4.1, where they are all labeled “Forward”.

5.4.4  Implementation

I have implemented the Rhodium strategy for automatically proving optimizations sound
inside the Whirlwind compiler, using the Simplify automatic theorem prover [36]. The
Whirlwind compiler supports a “verify rhodium” command that runs the soundness checker
on a Rhodium source file. For each propagation or transformation rule in the source file, the
soundness checker asks Simplify to prove the soundness condition for that rule, given a set
of background axioms. There are two kinds of background axioms: optimization-dependent
ones and optimization-independent ones.

The optimization-dependent axioms encode the semantics of user-declared fact schemas
and are generated automatically from the Rhodium source. In particular, for each edge-fact-
schema definition, there is an axiom saying that if an instance of the fact schema appears on
an input edge, then the meaning of the fact holds of the program state on that edge. These
axioms together encode the allMeaningsHold assumptions from both (fwd-prop-sound)
and (fwd-trans-sound). Furthermore, for each virtual-edge-fact definition and for each
node-fact definition, there is an axiom stating that the fact being defined is equivalent
to the body provided in the definition. Although the Rhodium formalization treats these
facts as if they were expanded away, the implementation essentially lets the theorem prover
perform this expansion, by providing axioms stating that a fact is equivalent to its defin-

ing body. The soundness checker generates these axioms by expanding case expressions
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into ordinary boolean expressions and performing a few simple transformations to produce
axioms in a form that the Simplify heuristics handle well. These transformations include
merging consecutive quantifiers, pushing foralls into conjunctions (rewriting Vz.(A A B) to
Vx.A A Vz.B), pushing foralls into the consequent (rewriting Vz.(A = B) to A = Vx.B if
A does not use z) and pushing implications into conjunctions in the consequent (rewriting

A= (BAC)to (A= B)AN(A=C)).

The optimization-independent axioms simply encode the semantics of the Rhodium in-
termediate language and they need not be modified in order to prove new optimizations
sound. To encode the Rhodium intermediate language in Simplify, I introduce function
symbols that represent term constructors for each kind of expression and statement. For
example, the term assgn(var(z), deref (var(y))) represents the statement z := xy. Next I
formalize the representation of program states. Simplify has built-in axioms about a map
data structure, with associated functions select and update to access elements and (func-
tionally) update the map. This is useful for representing many components of a state. For
example, an environment is a map from variables to locations, and a store is a map from

locations to values.

Given the representation for states, I define axioms for a function symbol evalEzpr, which
evaluates an expression in a given state. The evalExpr function represents the function 7(-)
from Definition 1 (in Section 3.4). I also define axioms for a function evalLEzpr which
computes the location of a lhs expression given a program state. Then I provide axioms
for the stepEdge, stepEnv, stepStore, stepStack, and stepMem functions, which together
define the state transition function h,n > k', 7 from Definition 2 (in Section 3.4). These
functions take as input an edge index h, a state 1, and a node n. The stepFEdge function
returns the resulting edge A/, and the remaining functions return the various components of

the stepped state . ® As an example, the axioms for stepping an edge and a store through

SInstead of defining individual stepEnv, stepStore, stepStack, and stepMem functions, one could just as
well have defined a single function stepState that returns a tuple.
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an assignment lhs := e are as follows:

Vn,m, lhs, e.
stmtAt(n) = assgn(lhs,e) =
stepEdge(h,n,n) =0

Vn, m, lhs, e.
stmtAt(n) = assgn(lhs,e) =
stepStore(h,n,n) = update(store(n), evalLExpr(n, lhs), eval Expr(n, e))

The first axiom says that the resulting edge index is 0. The second axiom says that the new
store is the same as the old one, but with the location of lhs updated to the value of e.

Finally, the — function is defined in terms of the —, function. In the context of
intraprocedural analysis, the bodies of called procedures are not accessible. Therefore, 1
conservatively model the semantics of stepping over a procedure call by a set of axioms that
hold for any call. The primary axiom says that the store after a call preserves the values of
local variables in the caller whose locations are not pointed to before the call. This axiom
encodes the fact that locals not reachable from the store cannot be modified by a call.

The handwritten background axioms, which encode the semantics of the Rhodium in-
termediate language, comprise of about 3,000 lines of code written in Simplify’s input lan-
guage. For the current Rhodium code base of 29 edge-fact schemas, 19 node-fact schemas, 1
virtual-fact schema, 105 propagation rules, and 14 transformation rules, the automatically
generated background axioms, encoding the semantics of edge facts, node facts and virtual

edge facts, constitute about 7,000 lines of Simplify code.
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Chapter 6
BACKWARD RHODIUM OPTIMIZATIONS

This chapter presents the formal details of how backward Rhodium optimizations are
checked for soundness. The structure of this chapter is the same as Chapter 5, except
that there is no section on syntax, since Section 5.1 already covered the entire syntax of
Rhodium, including backward optimizations. Section 6.1 defines the concrete backward
semantics, Section 6.2 presents the formal semantics of backward Rhodium optimizations,
and finally Section 6.3 describes the details of how the soundness checker works for backward

optimizations.
6.1 Concrete semantics

This section describes the backward concrete analysis C used to instantiate the framework
from Chapter 4 for backward Rhodium optimizations. I have chosen the backward concrete
semantics to be a backward state collecting semantics. This means that the concrete analysis
computes, for each edge in a procedure’s CFG, the set of states that the procedure can be in
at that edge, given some final set of states that the procedure must be in after it has finished
executing. The concrete flow function simply finds all possible states on the incoming edges
of a statement that can step to a given set of states on the outgoing edges. These ideas are
made precise in the following definition of the backward concrete analysis:

Definition 26 (backward concrete analysis) The backward concrete analysis C =
(D07 I—'C, |_|07 EC) Tc, J—c, Zd, FC) 18 deﬁned by

(Dca Uca Hca Ec, T07 —Lc) = (2State7 U, ﬂ, Q, State, @)
and

F.(n,cs)[h] = {n |3 n € State,i e N . [ € es[i] A h,np < i)} (6.1)

Although it may at first seem clumsy to have a backward concrete semantics that is

different from the forward concrete semantics, this approach is standard in abstract inter-
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pretation, and was originally presented by Cousot and Cousot in their seminal 1979 abstract
interpretation paper (see section 3.2 of [30]). The advantage of defining a separate concrete
semantics for backward optimizations is that, in this way, the backward semantics can be
defined using backward flow functions, similar to the way that backward dataflow analyses
are defined. As a result, both the concrete and the abstract semantics operate in the same
direction, and the proofs of soundness become much simpler. On the other hand, if one
uses a forward concrete semantics to prove the soundness of backward optimizations, the
proofs become complex and subtle because of the inherent mismatch of a forward concrete
semantics and a backward abstract semantics. In fact, the formalization of backward opti-
mizations in Cobalt [64], Rhodium’s predecessor, used a forward concrete semantics with a
backward abstract semantics, and those proofs of soundness were much more complex than
Rhodium’s proofs.

The one issue with using a backward concrete semantics is that in the end, one really
cares about preserving forward behavior. Unfortunately, preserving the backward collecting
semantics does not guarantee that the forward collecting semantics is preserved at each edge.
In fact, one of they key properties of a backward optimization is that there are transient
periods during execution where the states in the original and the transformed programs are
not at all the same. As a example, in dead assignment elimination, the states following the
removed assignment are different in the original and the transformed program.

It is however the case that preserving the backward state collecting semantics of a
procedure guarantees that its forward input-state-to-output-state behavior is preserved, for
input states that do not cause the execution to get stuck or to loop forever. In particular,
suppose that some original procedure starts in a state 77, and terminates without getting
stuck in state n’. The backward collecting semantics, if started with {5’} at the end of
this procedure, will compute the set S of states at the beginning of the procedure that will
lead to 1’. The set S must contain 7, simply by the definition of the backward collecting
semantics. If the original procedure is transformed in a way that preserves its backward
collecting semantics, then the backward semantics, if started with {n’} at the end of the
transformed procedure, will compute a set S’ at the beginning of the procedure that will

satisfy S’ D S. Since 7 belongs to S, it belongs to S’ too, and this means, by the definition
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of the backward semantics, that execution of the transformed procedure starting in n will
terminate without getting stuck in 7’.

For non-terminating runs, preservation of the backward collecting semantics provides a
rather meaningless guarantee that is exactly the opposite of what one would really want.
In particular, it makes no guarantees about the part of the run before the infinite loop, but
requires the unreachable part of the procedure, after the infinite loop, to be preserved. This
means, for example, that a backward optimization could transform an infinite loop into a
program that gets stuck. This is an unfortunate side-effect of looking at the procedure from
its endpoint. There may be ways of adapting the backward collecting semantics to address
this limitation, for example by incorporating some sort of forward reachability information
in the semantics.

Throughout the remainder of this chapter, it will sometimes be helpful to think of sets
of states in the backward concrete analysis as predicates. In particular, a set of states H
can be interpreted as a predicate on states P : State — bool, where P(n) L£peH In
this interpretation, the concrete backward semantics is a weakest precondition semantics,
which computes, at each node in the CFG, the weakest condition that must hold at that
edge for some final condition to hold at the end of the procedure. The backward concrete
flow function is then just a weakest precondition computation. This weakest precondition
semantics is exactly the one used by Cousot and Cousot in [30].1

Along with the concrete analysis, one must also specify the callerToCallee and

calleeToCaller functions, which, for the backward case, are defined as follows:

Definition 27 (backward callerToCallee) The backward version of callerToCallee is de-
fined by:

callerToCallee(n, cs) = cs

Definition 28 (backward calleeToCaller) The backward version of calleeToCaller is de-

!The weakest precondition mentioned here is strict, meaning that the precondition must also ensure that
the statement terminates. In contrast, the weakest liberal precondition is not required to ensure that the
statement terminates — it must only ensure that if the statement terminates, then the postcondition holds.
Using liberal preconditions instead of strict ones would not solve the previously mentioned limitation that
backward collecting semantics cannot make meaningful guarantees about non-terminating runs.
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fined by:

callee ToCaller(n, cs)[0] = {n | 31’ € State . [y’ € cs[0] A 0,7 5 1,71}
where cn = interCallNode(n)

It is easy to see from the above definitions that calleeToCaller and callerToCallee satisfy
requirements (4.1), (4.2), (4.3), and (4.4). Furthermore, the concrete backward flow func-
tion defined in (6.1) computes the same information at call nodes as the flow function from
Definition 5 in Section 4.1. Indeed, Equation (6.1) says that the set of states before a call
node is computed by taking the union over the outgoing states of the corresponding incom-
ing state. Definition 5 describes the same computation, except that it uses the collecting

semantics of the callee to determine the set of all incoming states.
6.2 Rhodium semantics

The semantics of a backward Rhodium optimization, which is an optimization containing
only backward rules, is defined analogously to the forward case, by using an associated
AT-analysis. I fix the backward Rhodium optimization O whose semantics is being defined,
and I define the semantics of O using an associated AT-analysis (Ao, Rp), where Ap =
(DU, E, T, 1, Fo,a). I first define the lattice (D,U,M,C, T, 1), followed by the flow
function Fp, the abstraction function «, and finally the replacement function Ro.

As in the forward case, I assume that all node facts and virtual edge facts in O have
been macro-expanded away, I use EdgeFact to denote the set of edge-fact schema names

declared in O, and I use r € O to say that rule r appears in O.

6.2.1 Lattice

Similarly to the forward case, the lattice of the backward Rhodium AT-analysis is the power-
set lattice of all backward Rhodium facts. The definition of this lattice is exactly the same

as in Definition 14.

6.2.2 Flow function

The backward flow function is defined as in the forward case, except that out is replaced

with in, and vice-versa. To be explicit, the backward flow function Fo is defined as follows:
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Definition 29 (backward flow function) The flow function Fo of (Ao, Ro) is defined
by:
Fo(n,ds)[h] = {6(EF(t1,...,t;)) | (@f ¢ then EF(t,...,t;)@in[h]) € O A
[4]6(0, ds,n)}

Definition 30 The meaning function [1]p : Subst x D* x Node — bool for the antecedent
Y of a backward rule is defined as follows:

(6.2)

[true]y(0,ds,n) = true

[false]y(0,ds, n) = false

[' ¢1(6, ds, n) = —[¥]s(0.ds, n)

[vo1 1 ¥2]s(6, ds, n) = [¥]e(0,ds,n) v [2]s(0, ds, n)
[11 && o]p(6,ds, ) = [u1]s(8,ds,n) A [t2]s(0,ds,n)
[11 => va](0, ds,n) = [v1ls(8,ds,n) = [12]s(0,ds, n)
[forall X : 7. ¢]y(60,ds,n) = Vt:1. [¢]p(0]X — t],ds,n)
[exists X : 7. ¥]p(0,ds,n) = Jt:7. [¢]p(0[X — t],ds,n)

[t1 == t2]p(0,ds,n) = [t1](8,n) = [t2] (0, n)

[t1 V= t2](0, ds,n) = [t1](0,n) # [t2](0,n)

[EF(t1,....t:)@out[h]]s(0,ds,n) = EF([t](0,n),...,[t:]0,n)) € ds[h]

where the semantics of a term t at a node n under substitution 0 is given by the function
[t] : Subst x Node — Term from Definition 16.

The monotonicity theorem from Section 5.3.2 (Theorem 6) also holds of the backward

flow function Fp.

6.2.3 Abstraction

As in the forward case, the meaning declarations provided by the programmer implicitly
define the abstraction function «. However, in the backward case, there are two kinds of
meanings that the programmer can declare: predicate meanings, and relational meanings.
A predicate meaning is a predicate over program states 7, with the intuition being
the same as in the forward case: if the fact appears on an edge in the CFG, then its
meaning must hold of all program states computed by the concrete semantics at that edge.

Figure 6.2.3 shows an example of a backward fact schema whose meaning is a predicate.
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define backward edge fact is_expr_not_stuck(E:Expr)

2.  with meaning isExprNotStuck(n, E)

3. if stmt(X = E)

4. then is_expr_not_stuck(X)Qin

5. if stmt(X := E)

6. then is_expr_not_stuck(F)Qin

7. if is_expr_not_stuck(E)Qout A conservUnchanged(E)
8. then is_expr_not_stuck(E)Qin

Figure 6.1: Example of a backward predicate meaning

The is_expr_not_stuck(E) schema captures the fact that an expression E is used downstream
in the program without first being modified, and as a result must evaluate without getting
stuck.? The isExprNotStuck primitive, which is provided by the system, returns true iff a
given expression F evaluates without getting stuck in a given program state 1. The first two
rules, on lines 3-6, state that before the statement X := E, both X and E will be known
to evaluate without getting stuck. The last rule, on lines 7-8, says that if an expression
evaluates without getting stuck after a statement, and the expression is not modified by
the statement, then it also evaluates without getting stuck before the statement. The
conservUnchanged(E) node fact is a conservative version of unchanged(FE). In particular,
conservUnchanged does not use pointer information to determine whether or not the value
of E changes, since pointer information is encoded using forward facts, and such forward
facts cannot be used in backward rules.

Unfortunately, there are some useful backward fact schemas whose meanings cannot be
expressed as predicates. Consider, for example, the dead(X) fact schema. Intuitively, the
presence of dead(X) on a CFG edge e means that the value of X at edge e does not affect
the future behavior of the program. Unfortunately, this cannot be expressed as a predicate

that holds of all program states at edge e, because it requires mentioning the future behavior

2Recall from Section 4.2 that the Rhodium strategy for proving soundness preserves the behavior of those
runs of the original program that do not get stuck.



96

of the program. Rhodium therefore supports a second kind of backward meaning, called
a relational meaning. Instead of a predicate on program states, a relational meaning is a
relation over two program states 1, and 7. The intuition is that if a backward fact appears
on an edge, and the fact’s relational meaning holds of two program states 71 and 7, then
11 and 1y should produce the same future behavior of the program, from that edge onward.

As an example, consider the relational meaning of the dead(X) fact schema from Fig-
ure 2.5, which says that n; and 72 are equal up to X. The notation 7/X = n9/X is
mathematical sugar for equalUpTo(X,71,72), where equalUpTo is a primitive provided by
the Rhodium system. The meaning of dead(X) therefore says that if a variable X is identi-
fied as being dead, then it better be the case that if n; and 7o agree on all variables except
X, then 77 and 7o will lead to the same future behavior of the program. In other words,
the value of a dead variable X does not affect the future behavior of the program, which
captures exactly the intended semantics of dead variables.

The system determines whether a backward meaning is a predicate or a relation by
looking at its structure: if the meaning mentions 7, then it is a predicate meaning (and
therefore cannot mention 77 or 7); if it mentions 7y or 79, then it is a relational meaning
(and therefore cannot mention 7); if it contains no mention of 7, 1 or 73, then it is considered
a predicate meaning (although it could also be considered a relational meaning).

The above ideas are now made more precise. I use EdgeFact, to denote the set of
fact-schema names declared in O with a predicate meaning, and I call such fact schemas
“backward-predicate-fact schemas”. Similarly, I use EdgeFact, to denote the set of fact-
schema names declared in O with a relational meaning, and I call such fact schemas
“backward-relational-fact schemas”. As an example, is_expr_not_stuck(E) is a predicate-fact

schema, and so is_expr_not_stuck € EdgeFact,, while dead(X) is a relational-fact schema,

p7
and so dead € EdgeFuct,. Furthermore, a rule that propagates a predicate fact is called a
predicate rule, and one that propagates a relational fact is a relational rule. Predicate rules
can use only predicate facts, relational rules can use only relational facts, and transformation

rules are allowed to use both predicate and relational facts.

The backward abstraction function « : D, — D is defined as follows:
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Definition 31 (backward abstraction function) The backward abstraction function
«a: D.— D is defined as:

a(ns) ={EF(t1,...,t;) | EF € EdgeFacty Nt = arity(EF) A
(t1,...,t;) € GroundTerm® A (6.3)
[[EF]](t17 s 7ti7775)}

In the above definition, [EF] stands for the meaning of fact schema EF. In contrast
to the forward case, where [EF'] looked only at an individual program state n € ns, in the
backward case, [ EF'] operates on the whole set of states ns. Depending on whether EF is a
predicate-fact schema or a relational-fact schema, [EF] is defined differently. For predicate-
fact schemas, [EF] simply makes sure that the meaning declared by the programmer holds

of all program states in 7s, as stated in the following definition:
Definition 32 The meaning of a backward-predicate-fact-schema declaration:
define backward edge fact EF(X; : 1,...,X; : 7;) with meaning M
is given by [EF] : 11 x ... x 7; x 25%% — bool and is defined as:
[EF](t1,...,ti,ns) =Vn e ns . [EF]y(t1,...,ti,n)
where [EF], : 71 X ... x 7; X State — bool is defined as:
[BF(t, . 1) = [OOD](0)

where 0 = [ X1 — t1,..., X; — t;], 6(M) applies the substitution 6 to M, and [M] : State —

bool is the evaluation function from Definition 20.

The [EF] function for relational-fact schemas is more complicated to understand. I

present its definition first, followed by some explanations.

Definition 33 The meaning of a backward-relational-fact-schema declaration:
define backward edge fact EF(X; : 1,...,X; : 7;) with meaning M

is given by [EF] : 11 x ... x 7; x 25%% — bool and is defined as:

[EF)(t1,...,ti,ns) = Y(m,m2) € State x State .
[[EF]]T(tla cee 7ti77717772) = (771 S ns < 12 S 773)
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where [EF], : 71 X ... X 1; X State x State — bool is defined as:

[[EF]]T(th’ .. 7ti77717772) = [[9<M)]]r(7717772)
where § = [Xq — t1,...,X; — t;], O(M) applies the substitution 0 to M, and [M], :

State x State — bool evaluates the relation M on two given program states.

Definition 34 The evaluation function [M], : State x State — bool for a relational mean-
ing M is defined as follows (where each primitive predicate p has a meaning [p] and each

primitive function f has a meaning [f]):

[true],(n1,72) = true

[false],(n1,72) = false

[! MT; (1, m2) = —[M](n1,m2)

[My || Ma](n1,m2) = [Mi](n1,m2) Vv [M2];(n1,m2)
[My && Mo (m1,7m2) = [Mi]r(m1,m2) A [Ma]r (1, 7m2)
[My => Ms](n1,7m2) = [Mi]r(m,n2) = [Ma]r(m,n2)
[forall X : 7. M],(ni,m2) = Vt:7. [[X — t](M) ].(n1,m2)
[exists X : 7. M],(ni,m2) = Ft:7. [[X —t}|(M)],(n1,m2)
[t1 == t2]r(m1,7m2) = [ti]r-(m,m2) = [t2]r(n1,m2)

[t1 V= t2]r(m,m2) #  [t1lr(m,n2) = [talr(m,n2)

[p(t1,- s t)]r(m,m2) [Pl ([talr (1, m2), - - -5 il (15 m2))

where the relation semantics of a term t is defined as (where each primitive function f has

a meaning [f] given in Definition 17):

leta 1], (n1,m2) = m
leta-2];(n1,m2) = 2
[Ezpr](m,m2) = Ezpr
[Stmt],(n1,m2) = Stmt

£, t)etmyme) = L] (nas ), - - [Ede (1 m2))
Definition 33 at first seems daunting. However, by interpreting sets as predicates, the
definition becomes easier to understand. In particular, if the set ns is interpreted as a
weakest precondition P computed by the concrete semantics, then the following part of the

definition:

[EF](t1,...,ti,ns) = Y(m1,m2) € State x State .

[EF]-(t1, ... ti,n,m2) = (1 € s & 12 € ns)



99

becomes:

[EF](t1,...,t;, P) = ¥(ni,m2) € State x State .
[[EF]]T’(tla s 7ti77717772) = (P<nl) g P(772))

In this interpretation, if a relational fact appears on a CFG edge e, and if its relational
meaning holds of n; and 7, then the weakest precondition computed by the concrete se-
mantics at e will have the same truth value when evaluated in n; and in 7. This means
that n; and 7, are indistinguishable when it comes to establishing a given postcondition at
the end of the procedure: either they both establish the postcondition, or they both don’t.
This exactly captures the idea that 7; and 7y should lead to the same future behavior of
the program.

As an example, consider the meaning of the dead(X) fact schema, n1/X = n9/X, while

still using the sets-as-predicates interpretation. The [dead] function then becomes:

[dead] (X, P) =VY(m,n2) € State x State . n1/X =n2/X = (P(m1) < P(n2))

In this case, the body of [dead] says that the predicate P evaluates to the same truth
value on any two states that differ only on X, which is the same as saying that P does not
depend on X. As a result, the semantics of dead(X) appearing on a CFG edge is that the
weakest precondition at that edge does not depend on X. This exactly captures the fact
that the value of X does not affect the future behavior of the program.

As required by the analysis framework from Chapter 4, the backward abstraction func-

tion is join-monotonic. This is stated in the following lemma, which is proved in Appendix D:

Lemma 5 The backward abstraction function o from Definition 31 is join-monotonic.

6.2.4 Replacement function

The replacement function Rp for the backward case is similar to the forward case, except

that it uses [ - ] instead of [ - |:

Definition 35 (backward replacement function) The replacement function Ro of
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(Ao, Ro) is defined by:

, | (if ¥ then transform to s) € O A
singleNodeGraph(n,6(s)) if
RO(’I’L, dS) = [[QIZ)]]b(G, d57 ?’L)

€ otherwise
(6.4)
where singleNodeGraph(n,s) creates a sub-graph with a single node n' that satisfies

stmtAt(n') = s and that has as many input and output edges as n.

6.3 Soundness checker

This section describes the soundness conditions for backward propagation and transforma-
tion rules, and how these soundness conditions are implemented in the Simplify theorem

prover.

6.3.1 Propagation rules

Definition 36 A backward predicate propagation rule if ¢» then EF(ti,...,t;)@in[h] is
said to be sound iff the following condition holds:

V(n,n,n',h',ds,0) € Node x State x State x N x D* x Subst.

[[1/1]]6(976137”) A
hon<s W.n' A = [EF],(6(t1),...,0(t:),n)
allMeaningsHold ,(ds[h'], 1)

(bwd-prop-sound-pr)
where allMeaningsHold,, is defined as follows:

allMeaningsHold,(d,n) = Y(EF,(t1,...,t;)) € EdgeFact, x GroundTerm!".
EF(tl,... ,ti) €cd= [[EF]]p(tl,... ,ti,n)

The above condition is analogous to (fwd-prop-sound), except that facts in the an-
tecedent provide information about the outgoing program state n’ and the meaning of the

propagated fact has to be shown on the incoming program state 7.
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Definition 37 A backward relational propagation rule if ¢ then EF(t1,...,t;)@Qin[h| is

said to be sound iff the following two conditions hold:

V(n,m,n2,h',ds,0) € Node x State x State x N x D* x Subst.

[EF].-(6(t1),...,0(t:),n1,m2) A N I, € State . b,y <> Wy, <
[4]5(0,ds,n) dnly € State . h,n2 U h',

(bwd-prop-sound-rel-1)

V(n,m,n2, my,nh, I, ds, 0) € Node x State x State x State x State x N x D* x Subst.
[[EF]]T(G(tl)7 s 70(ti)7n17772) A
[415(6,ds,m) A N [ h=15 v ]

hom <> B, A someMeaningHolds(ds[h'], n}, )

L h7772 <1> h/ﬂ?é

(bwd-prop-sound-rel-2)

where someMeaningHolds is defined as follows:

someMeaningHolds (d,m,n2) 2 3(EF, (t1,...,t;)) € EdgeFact, x GroundTerm".
EF(tl, ce ,ti) edAN [[EF]]T(tl, ce ,ti,’l’]l,ng)

The intuition behind the above two conditions is as follows. To show that the EF fact
can correctly be propagated to in[h], one must show that if the relational meaning of EF
holds of two states 77; and 72, then 7; and 72 will lead to the same future behavior of the
program, from in[h] onward. This can be achieved by guaranteeing that (1) n; and 79
step to the same edge out[h/], producing program states 7} and 7, and (2) that 7} and
ny lead to the same future behavior of the program, but this time from out[h’] onward.
These are exactly the two conditions (bwd-prop-sound-rel-1) and (bwd-prop-sound-rel-2).
Condition (bwd-prop-sound-rel-1) guarantees if both 7y and 7y step, then they reach the
same outgoing edge: either both 7; and 7y get stuck, or they both step to the same outgoing
edge. Condition (bwd-prop-sound-rel-2) guarantees that if 1y and 79 step to 1} and 7}, then
n} and 74 will lead to the same future behavior of the program, from out[h’] onward. One
way of achieving this is to have 7] and 7, be equal. Another way is to have some backward

relational fact EF’ be present on out[h/], with the relational meaning of EF’ holding of 7}
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and 75. In this case, the semantics of EF’ implies that 1} and 7} will lead to the same future
behavior of the program, from out[h’] onward.
As an example, consider the following backward rule for dead assignment elimination,

from lines 4-5 of Figure 2.5:

if stmt(X := E) A mustNotUse(X)
then dead(X)Qin

This rule is sound because a statement X := FE that does not use X produces the same
outgoing state when executed on two incoming states that are equal up to X. For this rule,
it is the n; = ny case of condition (bwd-prop-sound-rel-2) that holds. As another example,

consider the backward rule from lines 8-9 of Figure 2.5:

if dead(X)Qout A mustNotUse(X)
then dead(X)Qin

This rule is sound because a statement that does not use X, when executed on two incoming
states that are equal up to X, produces two states that are also equal up to X. For this rule,
it is the someMeaningHolds case of (bwd-prop-sound-rel-2) that holds, where the existential
in someMeaningHolds is valid because the dead(X) fact belongs to the dataflow information
ds[h'], which follows from the dead(X)@Qout conjunct in the rule’s antecedent v, combined

with the [¢]5(0, ds,n) assumption in (bwd-prop-sound-rel-2).

6.3.2 Transformation rules

Definition 38 A backward transformation rule if 1) then transform to s is said to be

sound iff the following condition holds:

V(n,n',n,n',h,h',ds,0) € Node x Node x State x State x N x N x D* x Subst.

[¥]s(0,ds,n) A In” € State .
hon <= W A N h,nfn—/>h’,n”/\
stmtAt(n') = 0(s) A (' =n"V
A allMeaningsHold ,(ds[I'], ') ] someMeaningHolds(ds[h'],n',n") )

(bwd-trans-sound)
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Intuitively, the above condition works as follows. To show that node n can correctly be
transformed to node n’, one must show that the future behavior of the program starting in
a state n will be the same going through n and n’. This can be achieved by showing that the
states ' and ", produced by stepping 7 through n and n’, lead to the same future behavior
of the program. This, in turn, can be achieved by either having 1’ and n” be equal, or by
having some backward relational fact be present on out[h'], with the relational meaning of
the fact holding of n" and 7".

As an example, consider the transformation rule for dead assignment elimination, from

lines 10-11 of Figure 2.5:

if stmt(X := E) A dead (X )Qout
then transform to skip

This rule is sound because when the statements X := E and skip are executed in a
program state 7, the resulting program states n’ and 7" are equal up to X. For this rule,
it is the someMeaningHolds case of (bwd-trans-sound) that holds, where the existential in
someMeaningHolds is valid because the dead(X) fact belongs to the dataflow information
ds[h'], which follows from the dead(X)@Qout conjunct in the rule’s antecedent 1, combined

with the [¢]5(0,ds,n) assumption in (bwd-trans-sound).

6.3.8 Soundness of the approach

Similarly to the forward case, it must be shown that, for a backward optimization, if all pred-
icate rules satisfy (bwd-prop-sound-pr), all relational rules satisfy (bwd-prop-sound-rel-1)
and (bwd-prop-sound-rel-2), and all transformation rules satisfy (bwd-trans-sound), then
the backward optimization is sound. This is formalized in the following definition and

theorem:

Definition 39 We say that a backward Rhodium optimization O is sound iff (Ao, Ro) is
sound (according to Definition 7)

Theorem 9 (main backward soundness) If all propagation rules and transformation

rules in a backward Rhodium optimization O are sound, then O is sound.
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Theorem 9 follows trivially from the following two lemmas, which are proven in Appendix D,
and Theorem 5:

Lemma 6 If all propagation rules in a backward Rhodium optimization O are sound then
Fo as defined in (6.2) is sound.

Lemma 7 If all transformation rules in a backward Rhodium program O are sound, then
Ro as defined in (6.4) is sound.

As in the forward case, if all propagation rules of an optimization are sound, the induced
analysis Ao is guaranteed to be sound, as stated in the following theorem.

Theorem 10 (backward analysis soundness) If all propagation rules in a backward

Rhodium optimization O are sound, then the analysis Ao is sound.

The above four theorems and lemmas (Theorems 9 and 10, and Lemmas 6 and 7) all

appear in Figure 4.1, where they are all labeled “Backward”.

6.3.4 Implementation

The backward soundness conditions are encoded for the theorem prover in the same way
as the forward soundness conditions. The only additional predicate that needs to be
implemented is someMeaningHolds, and this is done by expanding the existential inside

someMeaningHolds into a disjunction of all the declared backward-relational-fact schemas.
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Chapter 7

EXECUTING RHODIUM OPTIMIZATIONS

Rhodium analyses and transformations are meant to be directly executable; they should
not have to be reimplemented in a different language to be run. This chapter covers several
aspects of Rhodium execution. Section 7.1 presents a simple flow-sensitive intraprocedural
execution engine for Rhodium analyses and transformations. Sections 7.2 and 7.3 then show
how Rhodium’s flow-function model can be used to automatically generate provably sound
flow-insensitive and/or interprocedural analyses.

The material presented in this chapter is not part of the main contribution of this disser-
tation — the main contribution is the Rhodium language design and the Rhodium soundness
checker. The execution engine presented in Section 7.1 is a prototype implementation and
lacks support for certain Rhodium features, for example user-defined merges. Furthermore,
the ideas in Sections 7.2 and 7.3 have been adapted to the Rhodium system from previously
known techniques, and they are at the design stage only — they have not been implemented
yet. Nevertheless, this chapter gives an overview of what kinds of techniques can be used

to execute Rhodium optimizations.

7.1 Intraprocedural flow-sensitive execution engine

Rhodium analyses and transformations are meant to be directly executable; they do not
have to be reimplemented in a different language to be run. Using Whirlwind’s framework
for composable optimizations [63], I have implemented a forward intraprocedural execution
engine for the core of the Rhodium language. Rhodium optimizations in Whirlwind peace-
fully co-exist with handwritten optimizations. By supporting such incremental adoption, it
is possible to provide benefits to compiler writers even if the whole optimizer is not written
in Rhodium.

The Rhodium execution engine interprets Whirlwind’s intermediate representation as
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Rhodium IR statements. In particular, the Whirlwind compiler represents a program using
a control flow graph (CFG) and a dataflow graph (DFG). The execution engine treats each
node n in Whirlwind’s DFG as an Rhodium IL statement that assigns a value to the output
edge of n based on input values to n. For example, a “plus” node in the DFG that has
two incoming edges e; and ez, and one outgoing edge es, is interpreted as a Rhodium IL
assignment ez := e + es. The nodes of the DFG are also threaded through the CFG, which
is the graph that is used for iterative dataflow analysis. This way of viewing a compiler’s
intermediate representation through the lens of the Rhodium IL allows Rhodium analyses
and optimizations to be executed on a variety of intermediate representations.

During iterative analysis, the Rhodium execution engine stores at each edge in the CFG
an element of D (each element of D is a set of facts), and propagates facts across statements
by interpreting the Rhodium rules. The engine’s flow function Feue. : Node x D* — D*
takes a node n, and a tuple ds of incoming dataflow sets (one set for each incoming edge),
and returns a tuple of outgoing dataflow sets (one set for each outgoing edge). The Feyec
function is the implementation of the F' function given in Equation (5.3) of Section 5.3.2.
The engine’s flow function operates as follows (where Ry is the set of forward rules that

propagate on the outgoing edge out[h]):

Fezec(n,ds)[h] = U apply _rule(r,n, ds)
reRy,

apply_rule(if 1 then f(t1,...,t;)Qout[h],n,ds) =

let © = sat(y,n,ds,[]) in | J{f(0(tr),....0(t:))}

0O
The flow function applies each rule separately and returns the union of the individual
results. The apply_rule function computes all the facts propagated by a given rule. To
do this, apply_rule first uses the sat function to compute all the satisfying substitutions
that make the antecedent ¥ hold. For each returned substitution 6, apply_rule adds the

propagated fact, f(6(t1),...,0(t;)), to the result set.
The sat : Pred x Node x D* x Subst — 25"t function (where we denote by Pred the
set of all Rhodium predicates, and by Subst the set of all substitutions) finds satisfying

substitutions: given a predicate 1, a node n, a tuple ds of incoming sets of facts, and a
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substitution 6, sat(1,n,ds,d) returns the set of all substitutions 6’ that have the follow-
ing properties: (1) 6 makes 1 hold at node n when ds flows into n, or more formally,
[¥](n,ds, ") holds (2) €' is an extension of # and (3) the additional mappings in 6’ are only
for free variables of ¢. The original call to sat passes the empty substitution [] for 6, and in
this case sat(1,n,ds,[]) computes the set of all substitutions over the free free variables of
1) that make v hold at node n. Here are some representative cases from the implementation

of sat:
sat(true,m,ds, 0) = {0}

(
sat(false,n,ds,0) =10
(
(

sat(1y V 9, m,ds,0) sat(11,n,ds,0) U sat(a,n,ds, )

sat(1 A b2, m, ds,0)

let © = sat(y1,n,ds,H)
in U sat (o, m,ds,0")

0'cO
sat(ty = to,n,ds, ) = unify(n,ty,ts,0)
sat(g(ti,...,t;)Qinlk],n,ds,8) = U unify_terms(n, (t1,...,t;),(s1,...,55),0)
g(s1,...,55)Edslk]
sat(Jz.ap,n,ds, ) = sat(Y,n,ds, 0\ z)[x — 6(z)]

The sat function makes use of a unification routine: the call unify(n,t1,t2,0) attempts
to unify 6(t1) and 6(t2). If the unification fails, then unify returns the empty set. If the
unification succeeds with substitution 6’, then 6’ is augmented with all the mappings from
6 to produce 0", and unify returns the singleton set {6”}. The unify_terms function works
like unify, except that it unifies a sequence of terms with another sequence. The unification
procedure also uses the parameter n that is passed to unify and unify_terms to substitute
the terms currStmt and currNode before doing the unification. Furthermore, unify tries to
evaluate terms such as applyBinaryOp(x,Cq,C3) from Figure 2.8. If such a term can be
evaluated, unify replaces the term with what it evaluates to, and then proceeds as usual. If
such a term cannot be evaluated (because for example either C'y or C5 is not bound yet),
then unification fails.

Universal quantifiers are handled by expanding them into conjunctions over the domain

of the quantifier. This expansion is possible because the domain of quantified variables is
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finite for any particular intermediate-language program. For existential quantifiers, the sat
function locally skolemizes the quantified variable, and then proceeds with the body of the
quantifier. Any mapping of the quantified variable introduced for satisfying the body of the
quantifier is discarded in the resulting substitutions. In particular, I use 0 \ = to denote 0
with any mapping of x removed. I also use Oz — 6(x)] to denote Upco{f [z — 0(z)]},
where 0’|z — 6(z)] stands for the substitution 6’ updated so that it maps x in the same
way that 6 does: if § maps x to a value, then 6'[x — 6(z)] maps z to the same value, and if
6 does not have a mapping for x, then neither does 6'[z — 6(x)]. Using this notation, the
result of sat(3z.1),n,ds, ) is therefore sat(¢,n,ds,0 \ x)[x — 0(zx)].

The Rhodium execution engine is currently a prototype, and it is not complete. For
example, it does not properly handle user-defined merges, backward analyses, backward op-
timizations, or rules involving the currNode term (as opposed to currStmt). Furthermore,
I have not implemented any of the profitability heuristics mentioned in this dissertation.
Finally, because the execution engine interprets rules, instead of generating specialized code
to run the rules, it is too slow for practical use. There are several directions of future work,

outlined in Section 10.3, for making the execution engine more efficient.
7.2 Flow-insensitive analysis

As mentioned in Section 2.1, propagation rules in a Rhodium optimization implicitly define a
flow function. One of the benefits of such a flow-function-based model is that flow functions
are a standard way of expressing analyses. Not only are compiler writers already familiar
with flow functions, but there is also a wide variety of known implementation and theoretical
techniques that apply to flow-function-based analyses. This section and the next show how
two of these previously known techniques can be used in the context of Rhodium to generate
sound flow-insensitive and interprocedural analyses.

The first benefit that falls out from Rhodium’s flow-function model is that Rhodium
can easily support provably sound flow-insensitive analyses, using a standard technique. In
particular, a flow-sensitive flow function can always be run in a flow-insensitive manner.
Instead of keeping a separate set of dataflow facts at each edge, the execution engine keeps

a single set I for the whole procedure. Iterative analysis proceeds as usual, except that each
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time a flow function is run, it takes I as input, and its result is merged into I. In this way

one can produce a sound flow-insensitive analysis from a sound flow-sensitive version.

As a simple example, Figure 7.1 shows an IL code snippet, on which we will run the
pointer analysis rules from Figure 7.2. To make the example easier to follow, the IL code
and the propagation rules use the statement form xA := & B, which in the real IL would

have to be decomposed into T := &B;*A :=T.

The left side of Figure 7.3 shows the results of the pointer analysis running in a flow-
sensitive mode. Each program point between two statements is annotated with a set of
dataflow facts. The left-most column shows the contents of these sets explicitly, where
the mustNotPointTo tags have been left out for brevity. Thus, the information coming
into a := &b is the full set of mustNotPointTo facts, whereas the information after a := &b
contains all mustNotPointTo facts, except for mustNotPointTo(a,b). The numbered boxes
indicate which facts were generated by which rules. Tuples in a box numbered n were gen-
erated by the n'" rule of Figure 7.2. Next to the explicit set representation, Figure 7.3 also
shows the results of the pointer analysis as may-points-to graphs. These graphs represent

the complement of the mustNotPointTo sets.

The right side of the figure shows the first iteration of running the pointer analysis
in flow-insensitive mode, where the execution engine only keeps track of one global set of
facts. The diagram displays this global set after each statement has been analyzed. The
main differences occurs after analyzing a := &c: in the flow-sensitive version, a does not
point to b, whereas in the flow-insensitive version, the mustNotPointTo(a,b) fact is lost
because the resulting set is merged (intersected) into the global set. Because the global
set has changed while analyzing statements during the first iteration, the execution engine
must analyze the statements again. During the second iteration, which is not shown in
the diagram, the global set does not change, and so the final result of the flow-insensitive
analysis is the set from the bottom right corner of the diagram. This result is imprecise,
in that it smears information from one program point to another. This loss in precision,
however, is counter-balanced by gains in efficiency. Flow-insensitive analyses can run a lot

faster than their flow-sensitive counterparts, mostly because of reduced memory usage.
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define forward edge fact
mustNotPointTo(X: Var, Y: Var)
with meaning 7(X) # n(&Y)

a := &b;

*a 1= &b then mustNotPointTo(X,Y )Qout

a = &c; if mustNotPointTo(X,Y )Qin A mustNotDef (X)
*a := &b; @ then mustNotPointTo(X,Y )Qout

if stmt(xA:=&B)AB #Y A
@ mustNotPointTo(X,Y )Qin A
then mustNotPointTo(X,Y)Qout

Figure 7.1: Sample IL code Figure 7.2: Pointer analysis rules for the code

snippet in Figure 7.1
o ; ; Flow-insensitive
Flow-sensitive : IL code (first iteration only)

"a,a a,b a,c e a,a a,b a,c
b,a b,b b,c : b,a b,b b,c
c,a c¢c,b c,c : c,a c¢c,b c,c

----------------------------------------------- b 1= gDt

1(a,a a,c) 5 1(a,a a,c)

2,a_b,b_Db,0) : a-—»b a—»b : 20,2 b,b Db,0

2(c,a c,b c,o) : 2(c,a c,b c,0)

............................. KA = B

2(a,a a,c) : 2(a,a a,c
b,a b,c a—»p : a—»p b,a b,c

2(c,a] c,b [c,c) : ; 2(c,a] c,b |c,c

e 3 ................. 3 ..... ................. i@ 1= G 3 ................. 3

1(a,a a,b ) O vy 1(@a )

2(ba o @ & ° 27 2k b, o)

2(c,a c¢c,b c,0) \c \c 2(c,a c,b <c,c)

----------------------------------------------- L@ = &b

2(a,al a,b 9| 2(a,a )

200, a b,cC a b a—b b,a b,c
c,a c,C NS NS c,a c,cC

2 c c
3 3 3 3

Figure 7.3: Results of flow-sensitive and flow-insensitive pointer analysis
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7.3 Interprocedural analysis

Rhodium’s flow-function model also makes it possible to adapt a previous flow-function-
based framework [23] from the Vortex compiler [33] in order to automatically build prov-
ably sound interprocedural analyses in Rhodium. The Vortex framework is capable of
automatically creating an interprocedural analysis from the intraprocedural version and
a context-sensitivity strategy. The Vortex framework has been used to write realistic in-
terprocedural analyses, such as various kinds of class analyses [47], constant propagation,
side-effect analysis, escape analysis, and various synchronization-related analyses [4].

The key insight here is that this framework can be proven sound by hand once and for
all, for a set of predefined context-sensitivity strategies. As a result, any interprocedural
analysis generated by one of these predefined strategies is guaranteed to be sound provided
the intraprocedural version is. To build a provably sound interprocedural analysis, the
programmer therefore writes the intraprocedural version in Rhodium, making sure that it
passes all the soundness checks, and then picks one of the predefined context-sensitivity
strategies. The interprocedural framework would then automatically generate an interpro-

cedural version of the analysis that is guaranteed to be sound.

The interprocedural framework is parameterized by a context-sensitivity strategy that
describes what context a function should be analyzed in at a particular call site. The
context-sensitivity strategy is embodied in a function selectCalleeContext. Given a call
site n, the context ¢ € Context in which the caller is being analyzed, and the dataflow
information d at the call site, selectCalleeContext(n,c,d) returns the context for analyzing
the callee at this call site.

Table 7.1 shows the definition of Context and selectCalleeContext for two commonly
used context-sensitivity strategies: the transfer function strategy (also known as Sharir and
Pnueli’s functional approach [102]), and Shivers’s k-CFA algorithm [103] (also known as the
k-deep call-strings strategy of Sharir and Pnueli [102]). The context-insensitive strategy
can be achieved using 0-CFA.

The Rhodium interprocedural framework operates by creating an interprocedural flow

function F; from an intraprocedural version F'. Instead of propagating facts d € D, the
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Table 7.1: Definition of Context and selectCalleeContext for two common context-sensitivity
strategies.

Strategy ‘ Context ‘ selectCalleeContext ‘
Transfer function D selectCalleeContext(n,c,d) = d
k-CFA list[string] | selectCalleeContext(n,c,d) = last(cat(c, [fnOf (n)]), k)

where: cat(l1,l2) concatenates lists [; and [a,

fnOf(n) returns the name of the enclosing
function containing n,

last(l, k) returns the sublist containing the

last k elements of [ (or [ if | contains fewer
than k elements)

interprocedural analysis propagates functions c¢d € Context — D which map a calling
context ¢ to the dataflow information d that holds in that context. The elements of D
form a lattice, whose ordering operator we denote by C. Although in theory, the algorithm
propagates functions, in practice, the algorithm represents these functions using partial

maps. The partial map [c1 — di, ¢ — da, ..., c; — d;] represents the function:

Ae) . if (eCey) dy
elsif (¢ C c2) do

elseif (¢ C ¢,) d,
else T

For nodes that are not function calls or returns, F; simply evaluates F' pointwise on each
range d element. For a call node n, for each (¢ — d) pair flowing into the call, F; merges
(pointwise) the pair (selectCalleeContext(n,c,d) — d) into the map on the entry edge of
the callee’s CFG, which will cause the callee to be further analyzed if the edge information
changes. For a return node, for each (¢’ — d’) pair flowing into the return, for each call site
n and inflowing pair (¢ — d) such that ¢’ = selectCalleeContext(n,c,d), the pair (¢ — d') is
merged into the map on n’s successor edge.

Figure 7.4 shows a simple example of how the framework operates runs an interprocedu-



113

~ After third

After first analysis After second analysis : analysis

F(x) {0 R R R Lt EREEREERREERREEE
x=1] =[x =1] [x=2]— [x=2] []—1]

Y oi= X o L
x=1—[x=1y=2 x=2l—[x=2y=3] []—]]

TEUUTIL J; -t

main {
a := £(1); @D
b := £(2); @
= £(3); 3
d := £(4); @

Figure 7.4: Results of flow-sensitive and flow-insensitive pointer analysis

ral constant-propagation analysis, using the transfer function strategy from Figure 7.1.
The intraprocedural analysis that the framework starts with is a constant-propagation
analysis written using the hasConstValue fact schema from Figure 2.3. For the purposes
of this example, the set {hasConstValue(xz1,c1),...,hasConstValue(x;,c;)} is denoted by
[1 = ¢1,...,2; = ¢;]. Also, each horizontal line in the figure represents the final set com-
puted by the analysis at the corresponding program point, with each column representing
the additional information added by a re-analysis of £. For example, at the entry of £, the
final result computed by the analysis willbe [ [x = 1] — [x =1],[x =2] — [x=2],[ | — [] ].
As will be explained shortly, this example uses a widening operator that limits to 2 the
number of distinct contexts that £ is analyzed in.

When the framework analyses the first call to £, on line 1, £ has not been analyzed yet,
so the analysis proceeds in the [x = 1] context, which results in a being 2 at the return site.
For the second call to £, on line 2, the function has already been analyzed in the context
[x = 1], but the new context, [x = 2|, causes re-analysis of £, because the information at the

entry of £ has changed. In this case, the returned dataflow information will map b to 3 in the
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caller. The pattern is now clear: every time f is called in a different dataflow information
context, it will be re-analyzed. This context sensitivity strategy can be expensive, and
in fact, may not even terminate. For example, if £ contains a recursive call £(x + 1),
then £ would be analyzed for successively increasing values of x. Analogously to widening
operators as discussed in Section 2.5.3, one can enrich Rhodium by allowing optimization
writers to specify a context widening operator to control the amount of context-sensitivity.
For example, after k different contexts have been selected for a function, all future contexts
could be widened to the most general context, [ |, bounding the number of times the function
is analyzed. In the above example, if we assume that & = 2, then the third call to £, on line
3, will cause one final analysis of £, in the context [ ]. The fourth call to £, on line 4, would

not cause any re-analysis, and the returned dataflow information at the call-site would be

[].
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Chapter 8

EVALUATION

In this chapter, I evaluate the Rhodium system along three dimensions: expressiveness,

debugging value, and reduced trusted computing base.

8.1 Expressiveness

One of the key choices in the Rhodium system is to restrict the language in which optimiza-
tions can be written, in order to gain automatic reasoning about soundness. Unfortunately,
a restricted language is inevitably less expressive than a general purpose language, and if
the restrictions in the language are too onerous, they may reduce expressiveness to a point
where the language is not useful anymore. To avoid this pitfall, I have carefully designed
Rhodium so that it provides compiler writers with expressive power, despite its restricted
nature. There are several aspects of the Rhodium system that enable this expressive power,
while retaining automated soundness checking. First, much of the complexity of an op-
timization can be factored into the profitability heuristic, which is unrestricted. Second,
Rhodium propagation rules provide a powerful way of expressing regular dataflow functions,
which are commonly used by compiler writers to express many optimizations. Third, opti-
mizations that traditionally are expressed as having simultaneous effects at multiple points
in the program, such as various sorts of code motion, can in fact be decomposed into several
simpler transformations, each of which fits Rhodium’s model. The loop-induction-variable
strength reduction from Section 2.3.1 illustrates all three of these points.

Even so, the current version of Rhodium does have limitations. For example, it cannot
express some forms of many-to-many transformations, for example loop unrolling, loop
tiling, and loop fusion. Also, optimizations that require more than first-order logic for the
meaning cannot be expressed in Rhodium. For example, the meanings of some facts in

shape analysis [52, 53, 24, 111, 97] require first-order logic plus transitive closure, which is
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strictly more expressive than first-order logic. As a result, although Rhodium can express
some simple kinds of heap summaries, it cannot express the more complicated kinds of heap
summaries arising in shape-analysis.

Furthermore, optimizations and analyses that build complex data structures to represent
their dataflow facts may be difficult to express. Rhodium programmers must build their
data structures out of sets of tagged tuples. These simple sets are deceivingly expressive,
being able to encode such complicated data structures as points-to graphs. Nevertheless,
tagged tuples do have limitations. For example, they are not first-class values, and so they
cannot be arguments to other tagged tuples. This restriction makes it difficult to express
data structures that have user-defined nested structures.

Finally, it is possible for limitations in either the Rhodium proof strategy or in the
automatic theorem prover to cause a sound optimization expressible in Rhodium to be
rejected. For example, the Rhodium proof strategy for forward optimizations requires the
forward concrete semantics to be preserved at each edge in the CFG of each procedure. As
a result, forward optimizations that preserve the input-output behavior of a procedure, but
not the semantics at internal edges of the procedure’s CFG, cannot proven sound in the
Rhodium system, even if they are expressible in Rhodium. Despite not being proven sound,
such optimizations can nevertheless be run by the Rhodium execution engine.

In all of the above cases, optimizations can still be written outside of the Rhodium
framework, perhaps verified using translation validation. Optimizations written in Rhodium
and proven sound can peacefully co-exist with optimizations written “the normal way”. The

Whirlwind compiler has in fact many optimizations written outside of the Rhodium system.
8.2 Debugging benefit

Writing sound optimizations is difficult because there are many corner cases to consider, and
it is easy to miss one. The Rhodium system in fact found several subtle problems in previous
versions of certain optimizations. For example, consider the following ezprlsAvailable( X, E)

fact schema, which captures the fact that an expression FE is available in variable X:

define forward edge fact exprisAvailable(X: Var, E:Expr)
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with meaning 7(X) = n(E)
decl X:Var, E:Expr

if currStmt = [X := E|
then ezprisAvailable( X, E)Qout

The above rule, which at first sight may seem correct, in fact is unsound. The prob-
lem is that on a statement x := x + 1, the rule will propagate that x is equal to x + 1,
which is obviously wrong. I wrote the above rule by mistake when implementing common
subexpression elimination, and the soundness checker caught the bug. Other users of the
Rhodium system have made similar corner-case mistakes. Although in retrospect the above
rule is obviously wrong, such mistakes happen surprisingly often when writing many rules.

Furthermore, some of these mistakes can go undetected for a long time, because the
particular corner case that triggers the bug may not occur in many programs. To illustrate
such an example, consider a scenario where the Rhodium IL had expressions with nested

derefences, for example *x + xy. The correct version of the above rule would be:

if currStmt = [X := E] A unchanged (E)
then ezprisAvailable( X, E)Qout

The unchanged(E) node fact here makes sure that E is not modified by the statement
X := FE, and it uses pointer information in the case of expressions that have dereferences

in them. Now, suppose that the programmer had instead written the following buggy rule:

if currStmt = [X := E| A varsInEzprNotModified(E)
then exprisAvailable( X, E)Qout

In this rule, the node fact varsinExprNotModified( E) makes sure that the variables ap-
pearing syntactically in E are not modified. This rule is buggy because for a statement z :=
*x + *y, it would propagate the fact exprlsAvailable(z,*x + xy), which would be incorrect
if x pointed to z (and *y was different from 0). However, it takes a nested dereference to
uncover this bug — statements with top-level dereferences, like X := %Y, do not uncover
the bug because if Y points to X, then the statement is a self-assignment, after which X

and xY will be equal. As a result, if programs that use nested dereferences are rare, say
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because the front-end of the compiler generates RISC-like statements [86], then the above

bug could remain uncovered for a long time.
8.3 Reduced trusted computing base

In computer-security terminology, the trusted computing base (TCB) of a system is the
part of the system that enforces the security policy. To compromise the security policy,
an attacker must compromise some part of the trusted computing base. In the context of
software validation, the TCB is that part of a system whose correctness guarantees that the
system as a whole satisfies the property it is meant to satisfy. As a result, a bug outside
the TCB cannot invalidate the property being ensured, whereas a bug inside the TCB
may do so. If the property we are trying to ensure is the soundness of a compiler, then
a traditional testing approach that provides no guarantees results in the entire compiler
being part of the TCB. The Rhodium system moves the optimization phase, one of the
most intricate and error-prone portions of the compiler, outside of the TCB. Instead, the
trust in this phase has been shifted to three components: the soundness checker, including
the automatic theorem prover, the manual proofs done as part of the Rhodium system, and
the engine that executes optimizations. Because all these components are optimization-
independent, new optimizations can be incorporated into the compiler without enlarging
the TCB. Furthermore, as discussed in Section 7.1, the execution engine is implemented as
a single dataflow analysis common to all user-defined optimizations. This means that the
trustworthiness of the execution engine is akin to the trustworthiness of a single optimization
pass in a traditional compiler.

Trust can be further enhanced in several ways. First, one could use an automatic theorem
prover that generates proofs, such as the prover in the Touchstone compiler [79]. This would
allow trust to be shifted from the theorem prover to a simpler proof checker. The manual
proofs of the Rhodium system are made public for peer review in Appendices B, C, and D
to increase confidence. One could also use an interactive theorem prover such as PVS [84]

to validate these proofs.
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Chapter 9

RELATED WORK

9.1 Correctness of program analyses and transformations

9.1.1 Manual techniques

A significant amount of work has been done on manually proving dataflow analyses and
transformations sound, including abstract interpretation [29, 30, 31], the work on the VLISP
compiler for PreScheme [48, 83|, Kleene algebra with tests [60], manual proofs of soundness
based on partial equivalence relations [15], and manual proofs of soundness for optimizations

expressed in temporal logic [108, 109, 98, 99, 61].

In fact, the Rhodium line of research (including Rhodium’s predecessor, Cobalt [64])
was inspired by recent work in this area by Lacey et al. [61]. Lacey describes a language for
writing optimizations as guarded rewrite rules evaluated over a labeled CFG, and presents
a general strategy, based on relating execution traces of the original and transformed pro-
grams, for manually proving the soundness of optimizations written in his language. Three

example optimizations are shown and proven sound by hand using this strategy.

Unfortunately, the generality of Lacey’s language and the associated proof strategy
makes it difficult to automate. Lacey’s guards may be arbitrary Computational Tree Logic
(CTL) [25] formulas interpreted over the entire CFG. In contrast, antecedents of Rhodium
rules can only refer to incoming and outgoing edge facts. The local nature of rules, combined
with the semantic meaning of facts, makes Rhodium rules more amenable to automated
soundness checking than Lacey’s CTL guards. Finally, Lacey’s language does not have the
concept of profitability analyses. As a result, it may be possible that certain optimizations
are expressible in Rhodium using profitability analyses, but not in Lacey’s language because

the profitability analyses are not expressible in CTL.
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9.1.2 Semi-automated techniques

Analyses and transformations have also been proven correct mechanically, but not automat-
ically: the correctness proof is performed with an interactive theorem prover that requires
guidance from the user. For example, Young [124] has proven a code generator correct using
the Boyer-Moore theorem prover enhanced with an interactive interface [56]. As another
example, Cachera et al. [21] show how to specify static analyses and prove them correct in
constructive logic using the Coq proof assistant. Via the Curry-Howard isomorphism, an
implementation of the static analysis algorithm can then be extracted from the proof of
correctness. Aboul-Hosn and Kozen present KAT-ML [1], an interactive theorem prover for
Kleene Algebra with Tests, which can be used to interactively prove properties of programs.
In all these cases, however, the proof requires help from the user. In contrast, Rhodium’s

proof strategy is fully automated.

9.1.8 Fully automated techniques

Previous automated techniques for guaranteeing compiler soundness, such as translation
validation [91, 77, 126, 125, 45] and credible compilation [95, 94], have focused on checking
the soundness of a given compilation run, rather than checking that the compiler is always
sound. In credible compilation, the compiler produces a proof that the optimized output
program has the same meaning as the original input program. This proof can then be
checked using a proof checker. In translation validation, a validator module observes the
intermediate-language programs before and after each transformation, and tries to show
that all these programs have the same meaning. Translation validation is a less intrusive
technique than credible compilation, since the validator module requires little or no help
from the compiler: the validator only needs to know the intermediate-language program
before and after each transformation, and compilers often have command-line switches to
produce this information.

Because translation validation and credible compilation both check soundness one com-
pilation at a time, a bug in the optimizer only appears when the compiler is run on a

program that triggers the bug. The Rhodium system allows optimizations to be proven
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sound before the compiler is even run once. However, to do so, optimizations must be writ-
ten in a special-purpose language. Furthermore, the Rhodium execution engine becomes
part of the trusted computing base, while translation validation and credible compilation
do not require trust in any part of the optimizer.

Rhodium’s current expressiveness limitations are very similar to the limitations that
earlier translation validation frameworks suffered from. For example, Necula’s [77] trans-
lation validator for gcc could only prove the soundness of so-called structure-preserving
transformations, meaning that the structure of loops and branches had to remain the same.
Rhodium’s local transformation model, where one statement is replaced with another, im-
poses essentially the same restriction. Advances in the state of the art have gradually lifted
many of these early limitations of translation validators. For instance, the Tvoc trans-
lation validation infrastructure [45] shows how to perform translation validation of both
structure-preserving transformations, as well as many kinds of loop optimizations, includ-
ing loop fusion, loop interchange and loop tiling. As future work, I plan to investigate
how these newer translation-validation techniques could be adapted to Rhodium in order
to support non-structure-preserving transformations, such as loop optimizations.

Proof-carrying code [76], certified compilation [78], typed intermediate languages [114],
and typed assembly languages [73, 72| have all been used to automatically prove properties of
programs generated by a compiler. However, the kinds of properties that these approaches
have typically guaranteed are type safety or memory safety. In our work, we prove the

stronger property of semantic equivalence between the original and transformed programs.

9.2 Languages and frameworks for specifying analyses and transformations

The idea of analyzing optimizations written in a domain-specific language was introduced
by Whitfield and Soffa with the Gospel language [121]. Their framework, which is called
Genesis, can automatically examine the interactions between different optimizations written
in Gospel, with the goal of determining the best order in which to run them. In particular,
by analyzing the pre- and post-conditions of optimizations, their framework can determine
if one optimization helps or hinders another optimization. This information can then be

used to select an order for running optimizations that will maximize helpful interactions
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and minimize hindering ones. The main differences between Rhodium and the Gospel work
stem from the difference in focus: the Rhodium system explores techniques for checking
the soundness of optimizations, whereas Whitfield and Soffa have explored techniques for
analyzing optimization dependencies.

Attribute grammars [58, 35, 34] are another method for specifying analyses that is
related to Rhodium. Attribute grammars provide a general mechanism for annotating
nodes of a parse tree with information. An attribute grammar extends a regular grammar
with semantic rules stating how attributes of terminals and non-terminals appearing in a
production are related to each other. The attributes at each node in the parse tree are
computed by solving the constraints that these semantic rules impose. Attribute grammars
are a very general mechanism for computing information, and they have in fact been used
to specify and solve dataflow analysis problems [9, 10, 22]. Rhodium propagation rules are
very similar to semantic rules in attribute grammars. However, semantic rules in attribute
grammars are not automatically connected to the semantics of the parse tree, as Rhodium
propagation rules are.

Many other frameworks and languages have been proposed for specifying dataflow anal-
yses and transformations, including Sharlit [115], SPARE [117], FIAT [49], McCAT [51],
System-Z [123], PAG [5], the k-tuple dataflow analysis framework [67], Dwyer and Clarke’s
system [38], languages based on regular path queries [106], languages based on temporal
logic [108, 61], and the language of Whaley and Lam [120] based on Prolog. Although all
these approaches make it easier to write and reason about optimizations, thus reducing
the potential for human errors, none of these approaches addresses automated soundness

checking of the specified transformations.
9.3 Automated theorem proving and applications

There has been a long line of work on automated theorem proving techniques, dating
back to the early 1950s. Some of the big areas of research in this work include han-
dling quantifiers in first-order logic [36, 101]; applying induction in a fully automated
way [57, 100, 75]; applying the resolution rule efficiently and effectively [96, 118]; deal-

ing with equality and equational theories [36, 66, 59]; developing decision procedures for
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various domains [80, 55, 112, 105, 122, 32]; handling the communication between differ-
ent decision procedures [81, 104]; handling the communication between decision procedures
and the heuristic prover [16, 41, 13]; reducing non-determinism in the proof systems, and
therefore the searches through these proof systems [88, 37]; and determining heuristics for
handling the remaining non-determinism [88, 37]. State-of-the art theorem provers today
are large, sophisticated systems, many of which have been developed and improved over
several decades. Some of these systems include PVS [85], Nuprl [26], Twelf [89, 100], Sim-
plify [36], the Boyer Moore theorem prover [56, 57], Isabelle [87], HOL [46], Vampire [92],
and Spass [119].

Automated theorem provers have also been put to use in many applications. They have
been used to solve open problems in mathematics, such as Robbin’s problem in boolean
algebra [69], which was open since the 1930s, and various open problems about quasi-
groups [107]. They have also been used to prove interesting properties about real-world
systems, properties that would have been hard, difficult or tedious to prove by hand. For
example, automated theorem provers have been used to verify microprocessors [17, 18, 85],
communication protocols [18], concurrent algorithms [18], and various properties of software
systems [42, 12, 54, 85, 89]. This is the line of research that the Rhodium system belongs
to.

The Rhodium soundness checker uses Simplify [36], the automatic theorem prover used
in the Extended Static Checker for Java (ESC/Java) [42]. Simplify is a fully automated
theorem prover for first-order logic based on the Nelson-Oppen architecture for combining
decision procedures [81]. In the context of ESC/Java, Simplify is used to determine whether
or not a given precondition holding before a sequence of statements implies a given post-
condition after the statements. Simplify’s heuristics for pruning the search space and for
instantiating quantifiers have been heavily tuned for this purpose. Since Rhodium’s proof
obligations are of the same nature as the ones in ESC/Java (show that some postcondition
follows from some precondition), Simplify has been very effective at discharging Rhodium’s
proof obligations.

Simplify has a few drawbacks, however. First, the input language to Simplify is untyped.

Not only does this mean that typing information has to be formalized explicitly, leading to
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longer and more complicated axioms, but it also means that misspelled variable names in the
axioms don’t get discovered until the theorem prover fails to prove an obligation. Second,
Simplify does not generate proofs, and as a result it cannot be removed from the trusted
computing base by simply checking its proofs. Generated proofs can also be useful to the
developers of the Rhodium system, for making sure that the theorem prover is following the
expected proof path. Finally, Simplify does not prevent inconsistencies in the background
axioms. If the background axioms are inconsistent, then Simplify can prove anything. To
gain confidence that this does not happen, the Rhodium system checks the sanity of the
generated background axioms, by asking Simplify to prove false in the context of these
axioms. If the theorem prover succeeds, then there is an inconsistency in the background
axioms that needs to be debugged. Another consistency check used in the Rhodium system
is to make sure that the soundness checker properly fails on a variety of rules that are known
to be buggy.

There are other theorem provers that do not have these drawbacks, but they are not
well-suited for the purposes of the Rhodium system. CVC [113] and its successor, CVC
Lite [14], are fully automated theorem provers based on the Nelson-Oppen architecture, but
they also have built-in support for types. However, their heuristics for handling quantifiers
are not as well-tuned as Simplify’s. Many theorem provers generate proofs, but most of
these provers are interactive. Of the ones that generate proofs and are fully automatic,
like CVC [113] and CVC Lite [14], none have heuristics as well-tuned for pre/postcondition

obligations as Simplify.
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Chapter 10

CONCLUSION

This dissertation has shown that it is possible to check the soundness of compiler opti-
mizations automatically if these optimizations are written in a specialized language. The
work presented here, however, is only a small step in a much broader research agenda aimed
at making good compilers easier to develop. This concluding chapter provides a glimpse of

some of the future opportunities for research in the Rhodium project.

10.1 Increasing expressiveness

There are many opportunities for increasing Rhodium’s expressive power. One direction
would be to add support for one-to-many transformations, such as inlining or peep-hole
optimizations that translate a single statement into a small sequence of simpler statements.
In the same vein, one could also add support for many-to-many transformations, such as
loop unrolling, loop interchange and loop tiling. As previously mentioned in Section 9.1.3,
it may be possible to adapt techniques from translation validation to prove the soundness
of loop transformations in Rhodium. Another way of supporting loop optimizations would
be to use a different intermediate representation, such as a program dependence graph [40],
where these optimizations are expressed as a one-to-one transformation. For example, in a
program dependence graph, loop unrolling can be expressed by replacing the region node
for the loop with a new region node that has more children. The challenge in supporting
such transformations is to devise a proof strategy for the new IR that will be amenable to
automation.

Using different program representations can also improve expressiveness in other ways.
If one had an AST representation or a dataflow graph representation, the programmer could
write interesting analyses and transformations over these graphs, rather than simply over

the CFG. In addition to supporting new kinds of IRs, the Rhodium language could also
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support transformations from one IR to another, for example from ASTs to CFGs. If the
refinement relation were defined appropriately, this would also allow the Rhodium system
to support provably correct refinement-based programming [11, 71], in which an efficient
executable is generated from a high-level specification by applying a sequence of refinements
expressed in the Rhodium language. The Rhodium system could also provide automatic or
semi-automatic support for converting an optimization that runs on one representation to
an optimization running on another.

Another direction for improving the expressiveness of Rhodium would be to provide
better mechanisms for building user-defined data structures. For example, one could make
tagged tuples first-class, so that they can be used a parameters to other tagged tuples. The
main challenge in doing so would be to develop a mechanism for expressing the meaning of

a tagged “parent” tuple in terms of the meanings of its tagged “children” tuples.

10.2 Checking properties other than soundness

We all want compilers to be sound, but we also want them to produce good-quality code.
The Rhodium system has so far focused on providing strong guarantees about the former,
but not the latter. One broad direction of future work would be to provide static guarantees
about the quality of the generated code. For example, if the programmer had some way of
specifying what scenarios are important for performance, then the system may be able to
check that under those scenarios, optimizations cannot degrade performance. As another
example, the system may be able to quantify how precise propagation rules are, and flag
rules whose precision could be improved.

In the same vein, there are other static properties of analyses or transformations that
one may want to check. For example, soundness is not strictly necessary in bug-finding
tools, and in such cases one may want to purposely give up soundness to gain scalabil-
ity. However, doing so in a unprincipled way can lead to mistakingly giving up too much
soundness, and therefore losing opportunities for finding bugs. This pitfall could be avoided
by specifying formally the ways in which an analysis is intended to be unsound, and then

checking statically that the analysis is unsound only in these expected ways.
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10.3 Efficient execution engine

Another direction for future work is to explore more efficient implementation techniques
for the Rhodium execution engine. For example, one could develop tools that perform
offline partial evaluation of propagation rules with respect to the various statement kinds,
and then generate an efficient flow function that dispatches based on the statement being
analyzed to a specialized set of rules. One could also develop tools that make analyses
scalable by examining their run-time traces and then using the gathered information to
guide the automatic application of various representation optimizations (such as switching
to BDDs [20] or bit-vectors for encoding Rhodium dataflow information). Finally, one
could develop tools to explore automatically (or semi-automatically) the tradeoffs between

the scalability and precision of a Rhodium analysis.

10.4 Inferring parts of the compiler

By providing static checks of soundness, The Rhodium system makes it easier to write
sound program analyses and transformations. One could take this idea one step further
by having the system automatically generate sound optimizations, rather than have the
programmer write them in the first place. Despite a long line of work on generating various
parts of a compiler from specifications [90, 62, 39, 2, 19, 44, 43], there has been little
work on automatically inferring analyzers and optimizers, and on doing so in a way that
guarantees their soundness. Some recent advances in this poorly explored direction are
nevertheless encouraging, including the recent work on inferring compiler heuristics using
genetic programming [27, 28, 110]. There are many more opportunities for novel research
in this area.

In particular, colleagues and I are currently taking the first step in generating Rhodium
optimizations automatically: instead of requiring programmers to write the rules for prop-
agating facts across statements, a tool will infer these rules automatically from the fact
schemas and their associated semantic meanings [93]. The algorithm for automatically
generating Rhodium rules employs a search technique similar in nature to those used in au-

tomatic theorem provers. For the fact schemas we considered, our automatically generated
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rules covered more than half the cases of the manually written rules, and automatically
generated rules frequently included cases that were not covered by the handwritten rules.
To push this idea even further, one could try to infer fact schemas from a specification of
the desirable transformations. And finally, one could infer these desirable transformations
from a high-level goal-directed specification, or from examples showing the desired output
of the optimizer on some sample input programs. The end result would be that an entire
optimizer could be generated automatically from a high-level specification, all in a way that

guarantees its soundness.
10.5 Extensible compilers

Another research direction would be to use the Rhodium system as a way of empowering
end-user programmers with the ability to create their own domain-specific analyses and
transformations. Oftentimes, it is the end programmer who has the application-domain
knowledge and the coding-pattern knowledge necessary to implement useful analyses. This
dissertation can provide a foundation for extensible compilers, and more broadly, extensible
program analysis tools: end programmers, with little or no knowledge of program analysis,
can now easily extend existing compilers or program analysis tools without fear of breaking
them. One can use this foundation for investigating how domain-specific static checking

and domain-specific optimizations can be made practical and useful.
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Appendix A

INPUT AND OUTPUT EDGE EXPANSION

This appendix gives the semantics of the in and out edge names in terms of indexed edges
names. In particular, in and out are desugared by replacing every propagation rule r with

expand-edges(r), where expand-edges is defined as follows:

expand-edges(r) £ if r is a forward rule then exp-fwd(r) else exp-bwd(r)

where:

exp-fwd(if ¢ then ¢) = U {if currStmt = S A exp-in(1), S) then exp-out(¢, S)}
SeStmts

exp-bwd(if ¢ then ¢) = U {if currStmt = S A exp-out(, S) then exp-in(p,S)}

SeStmts
exp-in(a, S) £ /\ afin — inli]]
0<i<numlInEdges(S)
exp-out(, S) = /\ alout — outli]]
0<i<numOutEdges(S)

Stmts = { decl X, decl X[Y], skip, X :=new, X := new array,

X:=FE, X:=P(Y), if B goto Ll else L2, return X }
numInEdges(S) £ number of input edges of a statement S

numOutEdges(S) = number of output edges of a statement S

The intuition behind expand-edges is that, given a propagation rule r, it generates a spe-

cialized version of r for each input-output edge pair of each statement type.
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Appendix B

ADDITIONAL MATERIAL FOR THE ANALYSIS FRAMEWORK

B.1 Definitions

In this section, I give a definition for the solution function S 4 : Graph x D* — (Edge — D),
and the transformation function 7' : RFp x Graph x (Edge — D) — Graph.

Definition 40 Given an analysis A = (D,U,,C, T, L, a, F), a graph g and a tuple of
dataflow values v € D* for the input edges of g, Sa(g,t) is defined as follows.

First, I define the interpretation function Int : E; x (E; — D) — D as in Cousot and
Cousot [29]: given an edge e and the current dataflow solution m, Int computes the dataflow
value for e at the next iteration. Int is defined as:

L[k] if 3k.e = InEdges,|k]
Int(e,m) = -

F(n,mi(ing(n)))[k] where e = outy(n)[k]
The global flow function FG : (Eq — D) — (Ey — D) takes a map representing the current
dataflow solution, and computes the dataflow solution at the next iteration. FG is defined

as:
FG(m) = Xe.Int(e,m)

The global ascending flow function FGA is the same as F'G, except that it joins the result of
the next iteration with the current solution before returning. This ensures that the solution
monotonically increases as iteration proceeds, even if F is not monotonic. FGA is defined
as:

FGA(m) = FG(m) Um

Finally, the result of S4 is a fixed point of FGA (the least fixed point if F' is monotonic):

Salg,r) = | | FGAI (1)
j=0

where 1 2 Xe.L, FGA® = \z.x and FGA* = FGA o FGA*=! for k > 0.
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Definition 41 Given a replacement function R, a graph g and some analysis results m,
T(R,g,m) is defined as follows. First, I introduce the update function Update : Graph X
Node x Graph — Graph, which is used to replace a single node in a graph. Given an
original graph g, a node n and a replacement graph r for this node, Update(g,n,r) returns
the result of replacing the node n with v in old. Update is defined as follows:

Update(g, n, 7") = (Nneun Enewa innewy OUtnewa
InEdgespew, Out Edgespeqy)

where
Npew = (Ng \ {n}) UN,
Enew = (EgU E,) \ (Elmts(InEdges,) U Elmts(OutEdges,.))
where Elmts(tuple) = {d | Ji.tuple[i] = d}
InEdgespe, = InEdges,
OutEdgesye, = OutEdges,
() = ing(n') if n’ € Ny — {n}
ReplIn(in.(n')) ifn' € N,
Ut pew(n') = (M if n' € No —{n}
ReplOut(out,(n')) if n' € N,
and

ReplIn(e) = {an(n)[k:] if 3k.e = InEdges, k]

e otherwise

ReplOut(e) — {Owg(n)[k] if 3k.c = OutBdges |k

e otherwise

I now define Update., a simple extension to Update that works correctly if the replacement
graph is €:

Update(g, n, singleNodeGraph (n, stmtAt(n)) if r =€
Updatec(g,n,r) =

Update(g,n,r) otherwise

Note that Update, creates a copy of the original node if the replacement graph is e.

The graph returned by T(R, g, m) is then simply the iterated application of Update. on all
the nodes of g. Thus, T(R,g,m) is defined by:

T(R,g,m)=1IT(R,g,m,Ny)
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where IT (which stands for IteratedT) is:

IT(R, gnew,m, N —{n}) ifIne N

IT(R,g,m,N) =
(R, g,m, N) {g if N=10

with
Gnew = Updatec(g,n, R(n, m (ing(n))))

B.2 Proofs

Theorem 4 If the flow function of an analysis A is sound then A is sound.
Proof

Let A = (Dg,Uq,May Cg, Ta, La, o, Fy) be an analysis where Fy, is sound. Let (g, tc,tq) €
Graph x D! x D} such that @ (t.) Cq tq. Also, suppose that FG, and FG, are the global
flow functions in the definitions of S¢ and S 4 respectively (see Definition 40), and similarly

for the global ascending flow functions FGA, and FGA.. We need to show that:

D FGAI(L) | Ca |j FGA)(L,) (B.1)

j=0 7=0

Because « is join-monotonic, we have:

|j FGAI(L, |_| (FGAI(L, (B.2)

J=0

Using (B.2) and transitivity of C,, to show (B.1), all we need to show is:

|j (FGAI(L.)) Cq |i| FGAJ(L,)
7=0 Jj=0

To do this, we show Vj > 0. &(FGAL(L,)) T, FGAL(L,). We first establish a few facts.

e Since F, is continuous, it is monotonic, and therefore FGZ(L.) is an ascending chain.

Thus, we get:
Vj > 0.FGI(L.) = FGAI(L.) (B.3)
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e Let M., = FEdges, — D., and M, = Edges, — D,. Since I, is sound, it satisfies

property (4.5), which combined with @ (t¢) C, ¢4 can be used to get:

V(me, mqg) € M, X M,.

(B.4)
a(me) T, mg = a(FGe(me)) Ty FGa(my)
e Since FGA,(m) = FGy(m) U, m, we have:
Vm € My, FG,(m) T, FGAL(m) (B.5)

Now we can show Vi > 0. &(FGAL(L,)) T, FGAL(L,). We do this by induction on j.

e Base case. When j = 0, FGAO(N) = 1., and FGAO(N) = 1,. Since a(Lle) = 1,
(because « is bottom-preserving), we then get a(FGAO( ) Ca FGAO( a)

e Inductive case. Assume oz(FGAJ( ¢)) Ea FGAJ( ) for some j > 0. We need to show
a(FGAITY(L,)) Ty FGAL™ (L,). The proof is as follows:

G(FGAL(L,)) C, FGAL(L,)

A(FGI(L,)) Co FGAL(L,) using (B.3)
G(FG(FGLL,))) Ca FGa(FGAL(L,)) using (B.4)
A(FG(FGI(L,))) Co FGAL(FGAL(L,)) using (B.5)
Le)

a(FGITY (L)) Ty FGALT (L)

t ¢ ¢ ¢ 2

A(FGAITY (L)) C, FGALTY (1) using (B.3)

In the following proofs, it will be useful to consider S¢(g,¢) as the computation of the least
fixed point of a set of dataflow equations. In particular, I denote by FG ) the global flow
function F'G from the definition of S¢(g,¢) (Definition 40). Because F, is monotonic, we

have that Sc(g,:) = ;2 FG{W)(I).
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A fixed point of F'G, ) is a solution X : E; — D, to the equation X = F'G 4 ,)(X). Because
X is map from edges to dataflow information, the equation X = FG, ,)(X) is a represen-
tation of the traditional dataflow equations for the graph g with incoming information ¢. A

least fixed point m of FG g, is a fixed point of F'G(, ) such that for all fixed points m’ of

g»t)
FG g, it is the case that m E.m/.

Because F; is monotonic, the global flow function FG(,,) is also monotonic, and as a
result, Sc(g,t) computes the least fixed point of F'G(,,). This fact will become useful in
the following proofs because it provides an alternate way of reasoning about Sc¢(g,¢). In
particular, if we can show that m is the least fixed point of F'G ), then it must be the

case that m = S¢(g,¢).

Before proving Theorem 5, I establish the following two helper lemmas.

Lemma 8 (framework-helper-1) Let g and r be graphs such that r is a subgraph of g,
let cs € D7, and let Ifp, = Sc(g,cs). Then:

ifp, \ Edges, = Sc(r, lfp,(InEdges.))

Proof

Let Ifp, = Sc(r, lfp,(InEdges,)), so that we need to show Ifp, \ Edges, = Ifp,.

Let FG,4 be the global flow function F'G from the definition of S¢(g, cs) (Definition 40).
Let F'G, be the global flow function F'G from the definition of S¢(r, lfp,(InEdges,)) (Def-
inition 40).

Since r is a subgraph of g, any solution to Eqs(g,cs), if restricted to the edges of r, will
also be a solution to Fqs(r, lfpg(InEdgesr)). As a result, if m is a fixed point of F'G, then
m \ Edges, is a fixed point of F'G,. Since [fp, is the least fixed point of F'Gy, it is a fixed
point of FGy, and therefore Ifp, \ Edges, is a fixed point of F'G,. Since Ifp, is the least
fixed point of F'G;, we have lfp, C lfp, \ Edges,.

Because F, is monotonic, we have that Vj . FGA}(L.) = FGJ(L.) and Vj . FGAL(L,) =
FGI(L,).
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Therefore:
ifp, = |2, FGI(L,
fpg |_|]_O Q(N) (BG)
lfp, = |_|]Oi0 FG?‘(J—C)

If we can show that Vj . FG]( ¢) \ Edges, C FG]( c), then we are done, for then equa-
tions (B.6) would imply Ifp, \ Edges, C Ifp,, which combined with Ifp, C Ifp, \ Edges,,

implies Ifp, \ Edges, = Ifp, (and this is what we had to show).

All we need to show now is that Vj . FG]( <)\ Edges, C FGj( ¢). We do this by induction

on j.

e Base case. We have FGS(J:) =1, FGS(J_ ) = 1., and so FGO( <)\ Edges, C FGO( ¢)

o Inductive case. We assume FG]( )\ Edges, C FGj( ¢), and we need to show:

FGYTY(L,)\ Edges, C FGITY(L,)

Let my = FGJ( c) and m, = FG]( ¢). We therefore need to show:
FGy4(my) \ Edges, C FG,(m,)

which is:

Ve € Edges, . FG4(mgy)(e) T FGy(m,)(e)

We pick e € Edges,, and show FG4(mg)(e) C FG,(m,)(e).

There are two cases, based on whether or not e is an input edge of graph r:

— Case where e is an input edge of graph r. Then there exists a k such that InEdges, [k].
From the definition of F'G, (Definition 40), we have:

FG,(m;)(e) = k] (where ¢ is the tuple used to initialize the fixed point

computation of Ifp,.)
= lfp,(InEdges,)[k] (since ¢ = lfp,(InEdges,))

= lfpy(e) (since e = InEdges, [k])
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Because F, is monotonic, FGS(J:), FG;(J:),FG?(J:), ... is an ascending chain, and
so we have Vj . FG;(J:) C Ifp,. As aresult:

FGJ™ (L) C lfp,
= FGy(mg) Clfp,  (from the definition of m)
= FGy(mg)(e) C lfpy(c)
= FGy(my)(e) C FGy(m,)(e)  (using (B.7))

— Case where e is not an input edge of graph r. In this case, there exists a node n and
an integer k such that e = out,(n)[k]. From the definition of F'G (Definition 40), we
therefore have:

FGy(mr)(e) = Fe(n, my(ing(n))) ] (B.8)

Because r is a subgraph of g, we have ing(n) = in,(n) and outy(n) = out,(n). Then,

by the definition of FG (Definition 40), we have:
FGy(mg)(e) = Fe(n, mg(iny(n)))[k] (B.9)

Recall that the inductive hypothesis is mg \ Edges, T m,. Since n is a node of r, the
edges in the tuple in,(n) are all elements of Edges,, and we can use this inductive

hypothesis to get:

mg(ing(n)) C my (ing(n))

= F.(n,my(in,(n)))[k] C F.(n,m,(in.(n)))[k] (monotonicity of F.)

= FGy(my)(e) C FGr(m,)(e) (using (B.8) and (B.9))
|

Lemma 9 (framework-helper-2) Let g be a graph, and let n € Nodey be a node in g.
Let v be a replacement graph for n such that n and r have the same concrete semantics,
or formally ¥V ¢s € D¥ . Fe(n,cs) = Se(r,cs)(OutEdges,). Let g be the graph resulting
from replacing n by r in g, or ¢' = Update(g,n,r). Then g and g’ have the same concrete
semantics, or:

—_

—
Ves € DY . Se(g, cs)(OutEdges,) = Sc(g', cs)(OutEdges )
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Proof
T — R S—
Pick cs € D}, and show Sc(g, ¢s)(OutEdgesy) = Sc(g', ¢s)(OutEdgesy ).

Let v’ be the graph that is exactly the same as r, except that it’s input and output edges are
ing(n) and outy(n). The graph r’ is the subgraph of ¢’ that resulted from the substitution

of n.

Let @ =ing(n), and y = out,(n).
Let Ifp, = Sc(g, cs)-

Let ¢sp, = ﬁ;(?)

Let Ifp, = Sc(r', csp).

Let £ = Edgesy — Edges,. Intuitively, E is the set of edges in the replacement graph r,
but without its input and output edges.

Let m : Edgey — D, be defined as follows:

m(e) = lfps(e) if e € Edges, (B.10)

Ifp./(e) ifeckE
m is a fixed point of FG 4 ), since by construction it satisfies all the dataflow equations
in Fqs(g',cs).
The claim is that m is the least fixed point of FG gy .5, which means that m = Sc(¢’, cs).

If this is the case, then because OutEdges;, = OutEdgesy and because all edges in
OutEdgesy are in Edgesy, we would have from Equation (B.10):

—
m(OutEdgesy) = lfp,(OutEdges,)
which, since m = Sc(g’, cs) and Ifp, = Sc(g, cs), becomes:
Se(d', es)(OutEdgesy) = Sc(g, cs)(OutEdgesy)

which is what we had to show.

All we need to show now is that m is indeed the least fixed point of F Gy ).
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Let m/ be the least fixed point of FG 4 ., so that m’ = Sc(g', cs).

Since m/ is the least fixed point of FG 4 cs), and since m is a fixed point of F Gy ), we
must have m’ C m. We will now show m C m’, which will establish that m = m’ and that

m is indeed the least fixed point.

Since the domain of m and m’ is Edges, U E, to prove m C m/, we will show m \ Edges, C

m' \ Edgesg, and then m\ EC m'\ E.

e Proof of m \ Edges, T m'\ Edges,
By Lemma 8, instantiated with g = ¢/, r = 7/, we get that:

_
m' \ Edges, = Sc(r',m/(InEdges,))

By the construction of how n gets replaced with 7 in ¢, we have = = InEdges,s, and so
we get:

m'\ Edges,, = Sc(r',n—l;(?)) (B.11)

Since OutFEdges, C Edge, , we get:
N
—

n—Q;(OutEdgesrz) = Se(r',m/(T))(OutEdges,)

By the construction of how n gets replaced with r in g, we have 3y = OutEdges,., and

so we get:

m (7)) = Se(r',m! (7)) () (B.12)

From our assumptions, we know:

——
YV ¢s € D} . Fe(n,cs) = Se(r,cs)(OutEdges,)

which, because r and 7’ only differ in their incoming and outgoing edges, gives us:

e E—

Vcs € D . Fo(n,cs) = Se(r', cs)(OutEdges,)
o = —
= Ves€ D). Fu(n,cs) = Sc(r',cs)(Y) (since Yy = OutEdges,)
= T\ = ——
= F.(n,m'(Z)) = Sc(r',m'(2)) (V) (instantiating with cs = m/(7))

~ F(n,m(T)=m(F) (using (B.12)) (B.13)
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Since 7' = iny(n) and Y = out,(n), Equation (B.13) states that m’ satisfies the local

dataflow constraint for n in the equation Fg¢s(g, cs).

Now consider a node n’ € N, different from n. Since m’ is a solution to Egs(¢’,cs),
and since the only difference between g and ¢’ is that n was replaced with r, it must be
the case that m’ satisfies the local dataflow constraint for n’ in the equation Eqgs(g,cs).
Therefore, m’ satisfies the local dataflow constraints of all nodes n’ € N, in the equation

Eqs(g,cs). As a result, m’ is a solution to Fg¢s(g, cs), and therefore:

m'\ Edgesg is a fixed point of FG g )
= Ifp, ©m'\ Edges, (by the defn of least fixed point)

= m\ Edgesy, T m'\ Edges, (since for Ve € Edges, . m(e) = lfp,(e)) (B.14)

e Proof of m\ ECm'\ E

—
Let cs), = m/(@). Since all the edges in the 7" tuple are in Edges,, we get from (B.14):

—
mi (@) Cm'(T)
— —

by (B.10) and the fact that 7" € FEdgesy)
using definitions of ¢s,, and cs),)

by the monotonicity of S¢)

lifp,, T m'\ Edges, by (B.11))

ifp, \ECm'\ E since E C Edges,)

O S R A

(
(
(
Ufp; E Sc(r'sesy)  (by defn of ifp,)
(
(
(

m\ECm'\E by (B.10))

In order to prove Theorem 5, I will need a measure : D} — N function that decreases when
a procedure call is made. I use the measure function to perform a proof by induction over all
program states, and the fact that measure decreases at procedure calls allows me to assume

inductively that the callee satisfies the property that I am trying to prove of the caller.
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Unfortunately, a different measure function must be defined for each concrete domain that
the analysis framework from Chapter 4 is instantiated with. One can think of the measure

function as being part of the definition of the concrete semantics.

The measure function must satisfy the following requirements:

Vee Di .= JT; < measure(t) =0 (B.15)
Vi1 € Di, 1o € DY .11 C. 1o = measure(t1) < measure(iz) (B.16)
Vie D}, g € Graph,n € N .

[stmtAt(n) = (z:= f(y)) Ao # J:}] = (B.17)

measure(t) > measure(callerToCallee(n, Sc(g,t)(ing(n))))

Condition (B.15) simply states that measure returns 0 when evaluated on bottom, and that
the only value for which measure returns 0 is bottom. Condition (B.16) states that the
measure function is monotonic. Finally, condition (B.17) states that the measure function

decreases at procedure calls.

The definition of measure uses an auxiliary function remainingStackFrames : State — N.
Given a program state 7, remainingStackFrames(n) returns the number of stack frames

remaining in 7. It is defined as follows:
remainingStackFrames((p, o, (f1,..., fi), M)) = mazStackDepth — i
Note that since 0 < ¢ < mazStackDepth, it must be the case that:

Vn . 0 < remainingStackFrames(n) < mazStackDepth

The concrete domain D, is 25¢¢ for both the forward and the backward concrete semantics.
The measure function is defined identically in both cases:
0 if VEk € [1..4] . nsp = Lc
measure((nsi,...,Ns;)) =
max  max (1 + remainingStackFrames(n)) otherwise
ke[l.i] nEnsk

The above measure function returns the maximum number of remaining stack frames in

any of the program states in any of the ns sets. The max,¢,s, operator is well defined
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because remainingStackFrames is bounded by maxStackDepth. If remainingStackFrames
were not bounded by mazStackDepth, then the max,e,, operator could return oo, and
this would cause the measure function not to satisfy (B.17), since both measure(t) and

R —
measure(callerToCallee(n, Sc(g,t)(ing(n)))) could be oo.
Properties (B.15) and (B.16) hold trivially of the above measure function. The proof of

property (B.17) is more complex, and is shown below.

Lemma 10 The above measure function satisfies (B.17).

Proof

Pick v € D}, g € Graph, and n € N, assume stmtAt(n) = (z = f(y)) A v # JT;, and show

measure(t) > measure(callerToCallee(n, Sc(g, ) (ing(n)))).

There are two cases:

N -
e callerToCallee(n, Sc(g,1)(ing(n))) = 1. In this case, from (B.15),
- —

measure(callerToCallee(n, Sc(g,t)(ing(n)))) = 0.  Furthermore, from ¢ # L.

and (B.15), we know that measure(t) > 0, which means that measure(r) >

—
measure(callerToCallee(n, Sc(g,t)(ing(n))))

—_— —

e callerToCallee(n, Sc(g,1)(ing(n))) # L. In the forward case, callerToCallee
steps into the function call at node m, which will decrease remainingStackFrames
on every program state, and thus cause measure to decrease. As a result,

% . % .
measure(Se(g, ) (ing(n))) > measure(callerToCallee(n, Sc(g,t)(ing(n)))). Furthermore,
since the application of the forward flow function F, does not modify the stack of
any program states (even for function calls, since the function call is stepped over),
—
we get: measure(t) = measure(Sc(g,t)(ing(n))), which then gives measure(r) >

_
measure(callerToCallee(n, Sc(g,t)(ing(n)))).

In the backward case, callerToCallee is the identity function, and so
— —
measure(Sc(g,t)(ing(n))) = measure(callerToCallee(n, Sc(g,t)(ing(n)))).  The first

statement in the CFG is a return statement (recall that backward analyses
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run over the reverse CFG). Because executing F. on a return statement causes

remainingStackFrames to decrease, and running F,. on all other statement types does not
—_—

modify the stack, we get that measure(t) > measure(Sc(g,t)(ing(n))), which then gives

——
measure(t) > measure(callerToCallee(n, Sc(g, ) (ing(n)))).

Finally, I am now ready to prove Theorem 5.

Theorem 5 Given an AT-analysis (A, R), where A= (Dq,U,M,C, T, L o, Fy), if F, and
R are sound, then (A, R) is sound.

Proof

Without loss of generality, we can assume that the replacement function R always returns
graph replacements with only one node in them. Indeed, if R returned a multiple node
replacement graph r, then one can build a new replacement function R ;g which, instead
of returning r, returns a graph replacement containing a single node n equivalent to r (in
that it satisfies V ¢s € D} . F.(n,cs) = W(OutEdgesr)). Because R is sound, so
would Rygjngie, and the proof would proceed with Rgpge instead of R. Lemma 9 can then

be used to argue that the soundness of (A, Rgingie) implies the soundness of (A, R).

Let (A, R) be an AT-analysis that is locally sound, let 7 = (p1,...,ps) be a program where
gi = cfg(pi), and let [A, R](7) = n" where n’ = (p},...,p},) and r; = cfg(p}). We want to

show:

—_— —_—
Vi € [1.n] . Yie € D} . Sc(9i,te)(OutEdgesg,) Tc Se(ri, te)(OutEdges,, )

We let Inty,, FGy,, and FGA,, be the interpretation function, the global flow function, and

the global ascending flow function in the definition of S¢(g;, tc).

We let Int,,, FG,,, and FGA,, be the interpretation function, the global flow function, and

the global ascending flow function in the definition of S¢(r;, tc).



155

For [ > 0, let P(l) be the following formula:
P(l)= Vie[l.n] .V €D} .

—_— —_—
measure(tc) < 1= Sc(gi,te)(OutEdgesy,) Te Sc(ri, te)(Out Edgesy,)

Our goal is to prove VI > 0 . P(l). We do this by induction on [.

e Base case. We need to show P(0).

Pick i € [1..n], ¢, € D}, assume:

measure(te) <0 (B.18)

and show:

—_— —_—
Sc(9i, te)(OutEdgesg,) T Se(r4, L) (Out Edges,,)

Because measure always returns a value greater or equal to 0, from (B.18), we get that
—

measure(t.) = 0. Furthermore, since the only ¢, for which measure can return 0 is L., we

- . . . =¥ = -

get that ¢, = L. Since F, is bottom-preserving, we get that Sc(g;,tc)(OutEdgesg,) = L.,

and so then we trivially get:

—_— —_—
Sc(9i, te)(OutEdgesg,) T Se(r4, L) (Out Edges,,)

e Inductive case. We assume P(l) and show P(l + 1), which is:

Vi e [l.n] . Y. € D} .

_ _
measure(tc) < 141 = Se(gi, te)(OutEdgesgy,) C. Sc(ri, te)(OutEdges,,)
Pick i € [1..n], 1. € D}, assume:
measure(t.) <1+ 1 (B.19)

and show:

_ _
Se (gi7 Lc)(OUtEdgesgi) C. Sec (riv Lc)(OUtEdgesri)

—
If 1. = L., then we immediately get this, using the argument from the base case. Therefore

_
we only need to consider the case where ¢, # 1.
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Using the definition of S¢ we need to show:

| | FGA) (L) E | | FGAL (L)
j=0 J=0

Since F, is monotonic, we have that F' Gﬁl(lvc) and F Ggl(l\;) are ascending chains, and

SO:
Vj > 0.FG) (L) = FGAS,(L,)

Vj > 0.FGL (L) = FGAL (L)
Thus, all we need to show is:

| | FGI.(Lo) Ce | | FGL(L0)
j=0 Jj=0

To do this, we show:

Vji>0.FG) (L) B FGY(Le)
We do this by induction on j.

— Base case. We need to show FGgi(J:) C. FG%(J:) This follows immediately from
the fact that FGgi(J:) =1, and FG%(LNC) =1,
— Inductive case. We assume FG%Z. (J:) C. FGI, (J:), and we need to show FGf;l (J:) C.
FGIF (L)
Let a = FG%Z(J:) and b = FGil(J:), so that we are assuming:
aCeb (B.20)
We need to show FGy,(a) C. F'G,,(b), which, because Edges,, = Edges,,, is:
Ve € Edges,y, . FGy,(a)(e) T, FG,,(b)(e)

which is:

Ve € Edgesg, . Intg,(e,a) T, Int,,(e,b)
Let e € Edgesg,, and we need to show:
Intg,(e,a) C. Int,,(e,b) (B.21)

There are four cases, based on the definition of Int(e, m), and on how n was transformed:
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* There is some integer k such that e = InFdgeslk|
In this case, Inty, (e, a) = t.[k] and Int,, (e,b) = tc[k], and so Inty(e,a) C. Int,,(e,b).
* There is some integer k£ and some node n such that e = outy,(n)[k], and n was not
modified from g; to r; and n is not a call.
Let n’ be the corresponding node to n in r;. Recall that if a node is not modified from
g; to r;, it is actually copied over, with to a new node which has the same statement
as the original node. As a result, we have stmtAt(n) = stmtAt(n').
By the definition of Int, we get Int,,(e,a) = F.(n, @ (ing(n)))[k].
By the definition of T, we get that e = out,,(n')[k], and so by the definition of Int,
we get Int,,(e,b) = F.(n/, ?(mrl (n')))[k].
By the definition of T, we get that ing, (n) = in,,(n’). Let @’ = ingy,(n). Thus:

Intg,(e,a) = Fo(n, @ (7))[k] (B.22)

—
a

—
b

Int, (e,b) = Fo.(n', b (T))[K] (B.23)

Because n is not a call, F. evaluated at n only depends on stmtAt(n). Since

stmtAt(n) = stmtAt(n'), we therefore have:

Fo(n, D (7)) = Fo(n', b (7)[K] (B.24)
From (B.20), we know that:
al.b
= @(T)C, b (T)
= F.(n,@(7))[k] Ce Fa(n, b (7))[k] (by the monotonicity of F,))
= Fu(n, @ (T))[k] Ce Fo(n', b (T)[k] (using (B.24))
= Inty,(e,a) C. Inty,(e,b) (using (B.22) and (B.23))

And this is what we had to show in (B.21).

* There is some integer k£ and some node n such that e = outy,(n)[k], and n was not
modified from g; to r;, and n is a call.
Let n’ be the corresponding node to n in r; (recall that if a node is not modified from

g; to r;, it is actually copied over, with to a new node which has the same statement as
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the original node). Because n is a call, we therefore have stmtAt(n) = stmtAt(n') =
v = 1(2))

By the definition of Int, we get Inty,(e,a) = F.(n, @ (ing(n)))[k].

By the definition of T', we get that e = out,,(n’)[k], and so by the definition of Int,
we get Int,,(e,b) = F.(n/, ?(znn (n)))[%].

By the definition of T', we get that ing,(n) = in,,(n’). Let T = ing,(n). Thus:

Tntg,(e,a) = Fu(n, @ (7))[H

—
a
Inty,(e,b) = Fo(n', b () [K]

Since both n and n’ are call nodes, they only have one successor in the intraprocedural
CFG (which is the CFG over which we are reasoning), and so it must be the case

that £ = 0. Thus:
Intg,(e,a) = Fe(n, @ (2))[0]
Int,,(e,b) = Fu(n', (7))
Let g, = cfg(callee(n)) and r, = cfg(callee(n’)). The index u matches because n and

n’ are calling the same function.

From the definition of F, in Equation (5), we get:

—_
Inty,(e,a) = calleeToCaller(n, S¢(gu, ta)(OutEdgesy, ))

(B.25)
where 1, = callerToCallee(n, @ (7))
—_—

Int, (e,b) = calleeToCaller(n', Sc(ruy, tp)(Out Edges,.,)) (B.26)

where ¢, = callerToCallee(n/, ?(?))

Since we are only considering the case where ¢ # JT;, we can use (B.17) to get:
—
measure(t.) > measure(callerToCallee(n, Sc(gi,te)(T))) (B.27)

Since a = FGjZ.(LNC), and since Sc(gi,te) = ;29 FGjZ.(LNC), we have by the definition
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of LI that:

al. SC(QZ') Lc)
= @(7) Ce Sclgirre)(T)
= callerToCallee(n, @ (7)) C. callerToCallee(n, Sc(gi, te)(T))
(by monotonicity of callerToCallee from Equation (4.3))
-
= 14 C. callerToCallee(n, Sc(gi, te) (X))
(by definition of ¢4)
—
= measure(ty) < measure(callerToCallee(n, Sc(gi,te)(T)))
(by monotonicity of measure)
= measure(i.) > measure(Lq)
(from (B.27) and the fact that a > b > ¢ implies a > ¢)
=  measure(iq) <1

(from (B.19) and the fact that a < b <1+ 1 implies a <)
From our inductive hypothesis, we know P(l), which is:
P(l)=Vie[l.n] . V.. € D} .
—_— —_—
measure(te) < 1= Sc(gi,te)(OutEdgesy,) Ec Sc(ri, te)(Out Edges,,)

We instantiate this with ¢ = u and ¢, = ¢, to get:

Sc(Gus ta) (OutEdgesgy, ) Te Se(ry, ta) (Out Edges;,., ) (B.28)
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From (B.20), we have:

al.b
@(T)C ()
callerToCallee(n, @ (%)) C. callerToCallee(n, ?(?))
(by the monotonicity of callerToCallee from Equation (4.3))
callerToCallee(n, @ (7)) C. callerToCallee(n/, ?(5}))
(from Equation (4.1), combined with stmtAt(n) = stmtAt(n’))
ta Ec tp
(from the definition of ¢, and )
—_— —_—
Se(rus ta)(OutEdges,.,) Ec Se(ry, w)(OutEdges,, )
(from the monotonicity of S¢, which follows from the monotonicity of F)
—_— —_—
Sc(Gu, ta) (OutEdgesgy, ) T Se(ry, w)(Out Edgesy.,,)
(from Equation (B.28) and the transitivity of C.)
calleeToCaller(n, Sc(gu, ta)(Out Edgesg,)) C.
—_—

calleeToCaller(n, S¢(ry, ) (Out Edges,.,))
(by the monotonicity of calleeToCaller from Equation (4.4))
calleeToCaller(n, Sc(gu, ta)(OutEdgesg,)) C.

—_—

calleeToCaller(n’, S¢(ru, 1) (Out Edges,, ))
(from Equation (4.2), combined with stmtAt(n) = stmtAt(n’))
Inty,(e,a) C. Int,,(e,b)

(from equations (B.25) and (B.26))

And this is what we had to show in (B.21)

* There is some integer k£ and some node n such that e = outy, (n)k], and n in g; was
modified to n’ in r; because R returned a single-node replacement graph r,, for n.
Then by the definition of Int, we get Int,,(e,a) = F.(n, @ (ing, (n)))[k].

Since n was modified to a single-node graph n’, by the definition of T', we get that e =
out,,(n’)[k], and so by the definition of Int, we get Int,. (e,b) = F.(n/, ?(mrl (n)))[k].
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Since n was modified to a single-node graph n’, by the definition of T, we get that

ing,(n) = in,,(n'). Let @ = ingy,(n). Thus:

Intg,(e,a) = Fu(n, @ (7))[k] (B.29)

Int,,(e,b) = Fu(n/, b (2))[K] (B.30)

Let FGA, be the global ascending function from the definition of S (g;, T4)-

Since a(i.) E4 T4, we have from the proof of Theorem 4:
Vj 2 0.a(FGY (L)) Cu FGAL(La)
Instantiating this with the current j, we get::
AFG) (L)) Ea FGAL(L,)

or, equivalently:

a(a) T, FGAI(L,)
Furthermore, from the definition of S 4 and U,, we have that:
FGA](La) Ca Salgin Ta)
Thus, by transitivity:
a(a) Ca Sa(gi, Ta)

Let m = Sa(gi, Ta), so that:

ala) Cam
Let cs = @ (@) and let ds = mi (7). Therefore @ (cs) C, ds.
From the definition of [A, R] (Definition 6), we know that:

= T(R7 i, m)

For n to have been replaced with r,, by the definition of T', it therefore must be the

case that:

R(n,m (7)) =m,
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From the soundness of R, we know that (4.6) holds. Instantiating (4.6) with n =

n,ds = ds,g = rp,cs = cs, and using @ (cs) C, ds, we get:
—
F.(n,cs) C. Sc(rp,cs)(OutEdges,., )
Since 7, is a single-node graph with node n’, we have that
- )
Se(rn, cs)(OutEdges,, ) = F.(n',cs)
Thus:

F.(n,cs) C. F.(n',cs)

<l

= F.(n,a (7)) C. F.(n', @ (

)

From(B.20), we have:

al.b
= @(T)C. b (T)
= F.(n',ad (7)) Ce Fe(r/, ?(?)) monotonicity of F,
= Fu(n,@(T)) Ce F(n/, (7)) transitivity and (B.31)
= Fo(n, @ (T)K] Ce Folo', b (T))[K
= Intg(e,a) . Int,, (e, b) using (B.29) and (B.30)

And this is what we had to show in (B.21).

(B.31)
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Appendix C

ADDITIONAL MATERIAL FOR FORWARD RHODIUM
OPTIMIZATIONS

C.1 Proofs

Theorem 6 If the syntactic form 1 => vy is disallowed, and the syntactic form 11 is
allowed only if 1 is an equality (i.e. t1 == t3), or an inequality (i.e. t; '= ty) then Fo is

monotonic.
Proof

We assume the syntactic restrictions on the antecedents from Theorem 6 and we need to

show:

V(n,ds1,dss) € Node x D* x D* . ds; C dss = Fp(n,ds1) C Fo(n,ds2)

Or, equivalently:

V(n,ds1,dsa, h) € Node x D* x D* x N . dsy C dss = Fp(n,ds1)[h] E Fo(n,dss2)[h]

Using the definition of C, we need to show:

V n,dsi,dse, h . ds; C dsg = Fo(n,ds1)[h] 2 Fo(n,ds2)[h]

Using the definition of Fp from Equation (5.3), it is sufficient to show:

YV h,n,dsy,dss,0 . (dsy E dsa A [¢](0,ds2,n)) = [¥](0,ds1,n)

Let P(y) =V n,dsy,ds2,0 . (ds1 T dsa A [¥](0,dsa,n)) = [¢](0,ds1,n). We need to show
Vi . P(1). We do this by induction on the syntactic structure of .
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e Cases where 1) is true, false, t1 == to, or t; != t9
In all these cases [¢](6,ds,n) does not depend on ds.

Therefore [¢](6,ds1,n) = [¢](0,ds2,n), and so P(¢) holds.

e Case !¢
We need to show P(19).

Because of the syntactic restrictions mentioned in Theorem 6, this case only occurs with
P = (t1::t2) or ¥ = (t1! :tg).

In both of these cases, [¢](0,ds,n) does not depend on ds, so that [](f,dsi,n) =
[[1/1]](97d327n)‘

This implies =[¢](0,ds1,n) = =[¥](0, dsa, n).
By the definition of [-](€,ds,n) this implies ['¢](8,ds1,n) = [1¥] (0, ds2,n).

And therefore P(!9) holds.

e Case 1 || o

By the induction hypothesis we know P(¢1) and P(2), and we need to show
P(y1 11 4a).

To show P(¢1 |1 2), we assume:
dsl E d52 A [W)l I I w2]](93d527n)

and show:

[[¢1 'l 1;[)2]](0361517”)
By the definition of [-](0,ds,n), we have:

[[wl I 1/12]](9761327”) = [[wl]](evd‘s??n)\/H¢2H(97d327n)
[[wl I 1/12]](9761317”) = [[wl]](evdshn)\/H¢2H(97dslvn)
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Let A= H¢1H(07d527n)7 B = [[1112]](03 d527n)7 C= [[wl]](‘97d517n)7 and D = [[7112]](‘9,d517n)~
With these definitions, we are assuming ds; C dse and AV B and trying to show C'V D.

We do case analysis on whether or not A holds.

— Case where A holds. Then by ds; C dsy and P(1);), we get that C holds, and so C'V D.

— Case where A does not hold. Then B must hold. Then by ds; C dsy and P(12), we
get that D holds, and so C'V D.
o Case 11 && 1o

By the induction hypothesis we know P(t¢71) and P(t2), and we need to show
P(y1 && o).

To show P(11 && 13), we assume:
dsy T dso A Y1 && 2] (0, dse,n)

and show:

[v1 && 12](0,ds1,n)
By the definition of [-](#,ds,n), we have:

ﬂ¢1 && wgﬂ(e,dSQ,n) = Hlﬁlﬂ(e,ng,n)/\Hlﬁgﬂ(@,ng,n)
ﬂ¢1 && wgﬂ(e,dsl,n) = Wl]](e,dsl,n)/\Wg]](@,dsl,n)

Let A = [¢1](0,dsa,n), B = [¢2](0,ds2,n), C = [1](0,ds1,n), and D = [12] (0, ds1,n).
With these definitions, we are assuming ds; C dse and A A B and trying to show C A D.
Because A holds, using ds; C dss and P(v¢1), we get that C holds.
Because B holds, using ds; C dsy and P(1)2), we get that D holds.

Thus C' A D holds.

o Case ¥ => 1o

Because of the syntactic restrictions mentioned in Theorem 6, this case does not occur.
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e Case forall X :7 . ¢
By the induction hypothesis, we know P(%)), and we need to show P(forall X : 7 . v).

To show P(forall X : 7 . 1), we assume:
ds; C dsg A [forall X :7 . ¥](0,dse,n)

and show:

[forall X :7 . v¥](0,ds1,n)

By the definition of [-](6,ds,n), we have:

[forall X :7 . ¢](0,dse,n) = Vit:7.[Y](0[X — t],dsa,n)
[forall X :7 . ¢](0,ds1,n) = Vit:7.[¢](0[X — t],ds1,n)
Let A=V t:7.[¢](0[X — t],dse,n) and B=V t: 7 . [¢](0[X — t],ds1,n).
With these definitions, we are assuming ds; C dss and A and trying to show B.
To show B, pick a ¢ : 7, and show [¢](0[X — t],ds1,n).
Instantiating A with t, we get [¢](0[X — t],ds2,n).
Using ds; C dsy and P(v), we get [¢](0[X — t],ds1,n) (Note that the § in the P(%))
quantifier gets instantiated with 6[X  t]).
e Case exists X :7 . ¢
By the induction hypothesis, we know P(v), and we need to show P(exists X : 7 . ).

To show P(exists X : 7 . 1), we assume:

ds; C dso A [exists X : 7 . ¥](0,ds2,n)

and show:

[exists X :7 . ¥](0,ds1,n)
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By the definition of [-](#,ds,n), we have:

[exists X : 7 . ¢](0,dse,n) = Tt:7.[P](O[X — t],dsa,n)

[exists X :7 . ¥](0,ds1,n) = Tt:7.[¢](0[X — t],ds1,n)
Let A=3t: 7. [¥](O[X — t],ds2,n) and B=3t: 7. [{](0]X — t],ds1,n).
With these definitions, we are assuming ds; C dss and A and trying to show B.
From A we know there exists ¢ such that [¢](0[X +— t],ds2,n).

Using ds; C dsy and P(v), we get [¢](6[X — t],dsi,n) (Note that the 6 in the P(v))
quantifier gets instantiated with 6[X + ¢]).

Thus B holds, with ¢ being the witness to the existential quantifier in B.

Case EF(t1,...,t;)in[h]
We need to show P(EF(t1,...,t;)Qinlh]).
To show this, assume:

ds1 C dsg A [[EF(tl, - ,ti)@in[h]]](e, dss, n)

and show:

[[EF(tl, e ,ti)@in[h]]](e, dsy,n)

By the definition of [-](6,ds,n), we have:

[EF(t1,...,t,)Qinlh]](0, dso,n) = EF([t](0,n), ..., [t:](8,n)) € dsa[h]
[EF(t1,....t)@inlk]](0,dsi,n) = EF([t](0,n),...,[t:]0,n)) € dsi[h]

Let A = EF([t1](0,n),....,[t:](0,n)) € dsalh] and B = EF([t1](0,n),...,[t:](0,n)) €
dsl[h].
With these definitions, we are assuming ds; C dss and A and trying to show B.

Since ds; C dso, we have dsi[h] C dss[h].
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By the definition of C, we have dsi[h] D dsz[h].

dsi[h] 2 dsz]h] combined with A then gives B.

Lemma 2 The forward abstraction function o from Definition 18 is join-monotonic.
Proof

We need to show: a(|].Y) T | {a(c) | c € Y}, where Y is any chain of the lattice domain
D..

For our lattice, we will prove the following stronger property:
vy €2P o |Y)C| [{ale)|ceY} (C.1)

This property is stronger because it holds for any set Y of D, elements, not only for chains.

To show (C.1), pick Y € 2P¢, and prove:

a | 2] [ele) |ce vy
Using the definition of U, and U, this becomes:

o[ J¥) 2 fa(e) [e € V)

Let @ =JY and let R =(){a(c) | c € Y}. Note that because the type of ais a«: D. — D,

we have that R is a set of elements of D, and therefore R C D.

With these definitions, we now need to show a(Q) 2 R. To do this, assume f € R and

show f € a(Q). From R C D, f € R, and the definition of D (Definition 14), we get:
f=FEF(t1,...,t;) (C.2)

EF € EdgeFacty Ni = arity(BEF) A (t1,. .., t;) € GroundTerm' (C.3)

Our assumption is therefore EF(t1,...,t;) € R, and we are trying to show EF(t,...,t;) €
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a(Q). To do this, by the definition of « (Definition 18), we need to show:

EF € EdgeFacty Ai = arity(EF) A (t1,...,t;) € GroundTerm' (C4)

VneQ . [EF](ty,... ti,n) (C.5)

Condition (C.4) is already provided from (C.3). So we are only left with showing (C.5).

From the assumption introduced to show a(Q) 2 R, we have EF(t1,...,t;) € R, and since
R=){a(e) | c € Y}, we get from the definition of ):

VeeY . EF(ty,...,t;) € a(c)
which, from the definition of o (Definition 18), gives us:

VeeY .Vnec.[EF](ti,...,ti,n) (C.6)

Now we can show (C.5). To do this, assume n € @, and show [EF](t1,...,t;,n).

Since @ = Y, from n € @ and the definition of (J, we get that there exists a ¢ such that
¢ € Y An € c. Instantiating (C.6) with ¢ and n, we get [EF](t1,...,t;,n), which is what we
had to show.

Before proving Lemmas 3 and 4, I first establish the following helper lemma:

Lemma 11 (fwd-helper)

V(n,cs,ds,h) € State x D} x D* x N .
(?(cs) C ds An € cs[h]) = allMeaningsHold(ds[h],n)

Proof

We pick (n,cs,ds,h) € State x D* x D* x N, assume (@ (cs) C ds An € cs[h]), and show
allMeaningsHold (ds[h],n).

By the definition of allMeaningsHold, which can be found in Definition 23, we need to show:

Y(EF,(t1,...,t;)) € EdgeFact x GroundTerm?.

EF(ty,...,t;) € ds[h] = [EF](t1,...,ti,n)
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To do this, pick (EF, (t1,...,t;)) € EdgeFact x GroundTerm®, assume EF (t1,...,t;) € ds[h]
and show:

[EF](t1, ... ti,n) (C.7)

From the assumptions we know that o (cs) C ds, which means Vj . a(cs[j]) C ds[j], and

using the definition of C, Vj . a(cs[j]) 2 ds[j]. Thus, from EF(ty,...,t;) € ds[h], we get:

EF(t1,...,t;) € a(cs[h])

Using the definition of a (Definition 18), this means that:

Vn € cslh] . [EF](t1,...,ti,n)

From the assumptions we know that n € cs[h], and thus we get [EF](t1,...,t;,n), which is
what we had to show in (C.7).

Lemma 3 If all propagation rules in a forward Rhodium optimization O are sound then

Fo as defined in (5.3) is sound.
Proof

We need to show:
V(n,cs,ds) € Node x D} x D*
@ (cs) Cds = @ (F.(n,cs)) C Fo(n,ds)
Pick (n,cs,ds) € Node x D} x D*, assume o (cs) C ds, and show o (F.(n,cs)) C Fo(n,ds).

To show o (F.(n,ds)) T Fp(n,ds), we need to show that ¥V h' . a(F.(n,cs)[h']) C
Fo(n,ds)[h].

So pick A/, and show «(F.(n,cs)[h']) C Fo(n,ds)[h'], which, using the definition of C is
a(F.(n,cs)[h]) 2 Fo(n,ds)[h']. To show this, pick = € Fp(n,ds)[h'], and show that:

z € a(F.(n,cs)[l]) (C.8)
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Using the definition of Fp from Equation (5.3), € Fo(n,ds)[h'] implies that there exists
af, EF, i, (t1,...,t;), and ¢ such that:

x=0(EF(ty,....t)) (C.9)
(if v then EF(t1,...,t;)@Qout[h]) € O (C.10)
[1(6, ds, n) (C.11)

Using the definition of a from (5.4), we get (where I renamed the Vn quantifier to Vn'):

a(Fe(n,cs)[W]) ={EF(t1,...,t;) | EF € EdgeFacty A j = arity(EF) A
(t1,...,t;) € GroundTerm? A (C.12)
V' € Fe(n,cs)[l] . [EF](t1,...,t;,7)}
To show (C.8), because of (C.9) and the fact that §(EF (t1,...,t;)) = EF(0(t1),...,0(t:)),
we must show that EF(0(t1),...,0(t;)) € a(F.(n,cs)[h']. Using (C.12), this amounts to
showing that the following two conditions hold:
EF € EdgeFacty Ni = arity(EF) A (0(t1),...,0(t;)) € GroundTerm® (C.13)

V' € F.(n,cs)[l'] . [EF](0(t1),...,0(t:),n) (C.14)

Condition (C.13) follows directly from (C.10), and the fact that rules in O satisfy basic type

correctness requirements.

To show (C.14), pick o' € F.(n,cs)[h'], and show:

From 1’ € F.(n,cs)[h'] and the definition of F, from Equation (5.1), we know that there
exists 1 € State and h € N such that:

n € cs|h] (C.16)

hon <> B o (C.17)

Because all propagation rules in the Rhodium optimization O are sound, we know

from (C.10) that the rule (if ¢ then EF(t1,...,t;)@Qout[h’]) satisfies (fwd-prop-sound).
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We instantiate (fwd-prop-sound): the first two conditions of the antecedent are met
from (C.11) and (C.17), and the third condition of the antecedent follows from (C.16),
o (cs) C ds and Lemma 11. By instantiating (fwd-prop-sound), we get (C.15), which is

what we had to show.
[ |

Lemma 4 If all transformation rules in a forward Rhodium program O are sound, then

Ro as defined in (5.5) is sound.
Proof

We need to show:

V(n,ds,g) € Node x D* x Graph.
Ro(n,ds) =g =
o(n,ds) =g (C.18)
[Ves € DA (es) C ds =

—
Fi(n,cs) Cc Se(g, es)(OutEdgesg)]
Pick (n,ds,g) € Node x D* x Graph, assume Ro(n,ds) = g, then pick cs € D, assume

@ (cs) C ds and show:

_
F.(n,cs) Cc Se(g, cs)(OutEdgesg)

By the definition of Ro from Equation (5.5), and from Rp(n,ds) = g, we know that there
exists 1, § and s such that:

(if ¢ then transform s) € O ( )
g = singleNodeGraph(n, 6(s)) ( )
[+1(8, ds, n) (C.21)

(C.22)

stmtAt(n') = 0(s) where n’ is the node from the single-node graph g

From (C.20), g is a single node CFG. Furthermore, from (C.22) we know that n’ is the node

in g. As a result, we get:

Sc(g, cs)(OutEdgesy) = F.(n',cs)
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Thus, we need to show:

F.(n,cs) C. F.(n,cs)

V h' F.(n,cs)[h] C. F.(n',es)[h]

Pick an &/, and show:

F.(n,cs)[W] C. Fo.(n',cs)[1]
By the definition of =, this is:

F.(n,cs)[W'] C F.(n',cs)[R]

To show this, pick ' € F.(n,cs)[h’], and show:

n € F.(n',cs)[l] (C.23)

From 1’ € F.(n,cs)[h'] and the definition of F, from Equation (5.1), we know that there

exists n € State and h € N such that:

n € cs|h] (C.24)

hon<s W1 (C.25)

Because all transformation rules in the Rhodium optimization O are sound, we know

from (C.19) that the rule if ¢ then transform s satisfies (fwd-trans-sound).

We instantiate (fwd-trans-sound): the first three conditions of the antecedent are met
from (C.21), (C.25) and (C.22), and the fourth condition of the antecedent follows
from (C.24), a'(cs) C ds and Lemma 11. By instantiating (fwd-trans-sound), we get
h,n <n—,> n,n.

Since h,n - B',n', and since n € cs[h] from (C.24), by the definition of F, from Equa-
tion (5.1), we get that n’ € F.(n', cs)[h'], which is what we had to show in (C.23).
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Appendix D

ADDITIONAL MATERIAL FOR BACKWARD RHODIUM
OPTIMIZATIONS

D.1 Proofs

Lemma 5 The backward abstraction function o from Definition 81 is join-monotonic.
Proof

We need to show: a(|].Y) T | {a(c) | ¢ € Y}, where Y is any chain of the lattice domain
D..

For our lattice, we will prove the following stronger property:

vy €2P o | Y)E| [{ale)|ceY} (D.1)

This property is stronger because it holds for any set Y of D, elements, not only for chains.

To show (D.1), pick Y € 2P¢, and prove:
a |Y)C| [ede) [ce Y}
Using the definition of LI, and U, this becomes:
o JY) 2ol [c e ¥)
Let @ =Y and let R = ({a(c) | ¢ € Y}. Note that because the type of ais o : D, — D,

we have that R is a set of elements of D, and therefore R C D.

With these definitions, we now need to show «(Q) 2 R. To do this, assume f € R and
show f € a(Q). From R C D, f € R, and the definition of D (Definition 14), we get:

f=EF(t,... .t (D.2)

EF € EdgeFacty Ni = arity(EF) A (t1,...,t;) € GroundTerm' (D.3)
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Our assumption is therefore EF(t1,...,t;) € R, and we are trying to show EF(t1,...,t;) €
a(Q). To do this, by the definition of o (Definition 31), we need to show:

EF € EdgeFacty N i = arity(EF) A (t1,...,t;) € GroundTerm' (D.4)

[EF](t1, ..., Q) (D.5)

Condition (D.4) is already provided from (D.3). So we are only left with showing (D.5).

From the assumption introduced to show a(Q) 2 R, we have EF(t1,...,t;) € R, and since
R = a(e) | c € Y}, we get from the definition of [):

VeeY . EF(ty,...,t;) € a(c)
which, from the definition of a (Definition 31), gives us:

VeeY . [EF](t,... ti,c) (D.6)

Now we can show (D.5). There are two cases:

e EF is a predicate-fact schema. In this case, from the definition of [EF] for predicate-fact

schemas (Definition 32), Equation (D.6) becomes:

VeeY .Vnec. [EF]y(t1,...,t;,n) (D.7)

Also, from the definition of [EF] for predicate-fact schemas (Definition 32), Equa-

tion (D.5), which we need to show, becomes:

V’I’] S Q . [[EF]]p(tl,... ,ti,n)

To show this, pick n € Q, and show [EF],(t1,...,t,n).

Since @ = |JY, from 1 € @ and the definition of | J, we get that there exists a ¢ such that
c € Y An € c. Instantiating (D.7) with ¢ and 7, we get [EF],(t1,...,t,n), which is what

we had to show.
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e EF is a relational-fact schema. In this case, from the definition of [EF'] for relational-fact

schemas (Definition 33), Equation (D.6) becomes:

YeeY . Y(m,m) € State® . [EF],(t1,... ti,m,m2) = (M € c = 12 € ¢) (D.8)

Also, from the definition of [EF] for relational-fact schemas (Definition 33), Equa-

tion (D.5), which we need to show, becomes:

Y(m,m2) € State® . [EF],(t1,... ti,m,m2) = (m € Q & n2 € Q)

To show this, pick (n1,72) € State?, assume [EF],(t1,...,t;,n1,m2), and show n; € Q <
12 € Q. To do this, we show 11 € Q = 12 € @Q and then 15 € Q = m € Q.

— To show 11 € Q = 12 € @, assume 71 € @, and show 72 € Q.
Since @ = |JY, from 1, € @ and the definition of | J, we get that there exists a ¢ such

that ¢ € Y Ay € c. Instantiating (D.8) with ¢, 1, and 72, we get:
[EF] (t1,....ti,m,n2) = (M € c <12 € ) (D.9)

We've already assumed [EF],(t1,...,t;,n1,m2), and we know 71 € ¢, so (D.9) gives us
72 € ¢. Since ¢ € Y and Q = |JY, by the definition of | J, 72 € ¢ implies 12 € @, which

is what we had to show.

— To show 1y € Q = n1 € @, we proceed in a way that is exactly symmetric to the

N € Q = 12 € Q case.

Before proving Lemmas 6 and 7, I first establish the following two helper lemmas:

Lemma 12 (bwd-helper-1)

V(n,cs,ds,h) € State x D¥ x D* x N .
(d(cs) E ds An € cs[h]) = allMeaningsHold,,(ds[h],n)
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Proof

We pick (1, cs,ds,h) € State x D} x D* x N, assume (@ (cs) = ds A n € cs[h]), and show
allMeaningsHold,,(ds[h],n).

By the definition of allMeaningsHold,, which can be found in Definition 36, we need to

p7
show:
V(EF,(t1,...,t;)) € EdgeFact, x GroundTerm!.

EF(tl,... ,ti) € dS[h] = [[EF]]p(tl,...,ti,U)

To do this, pick (EF, (t1,...,t;)) € EdgeFact, x GroundTerm®, assume EF(tq,...,t;) € ds[h]
and show:

[EF](t1, ... ti,n) (D.10)

From the assumptions we know that o (cs) C ds, which means Vj . a(cs[j]) C ds[j], and

using the definition of C, Vj . a(es[j]) 2 ds[j]. Thus, from EF(t1,...,t;) € ds[h], we get:

EF(t1,...,t;) € a(es[h])

Using the definition of a (Definition 31), this means that:
[EF](t1,...,t;,cs[h])
which, because FF is a backward-predicate-fact schema, means:

Vn € cslh] . [EF]p(t1,...,ti,n)

From the assumptions we know that 7 € cs[h], and thus we get [EF],(t1,...,t;,n), which
is what we had to show in (D.10).

Lemma 13 (bwd-helper-2)

V(n1,m2,cs,ds, h) € State x State x D} x D* x N .
(@ (cs) C ds A someMeaningHolds(ds[h],n1,m2)) = (m € cs[h] < n2 € cs[h])
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Proof
We pick (n1,72,cs,ds,h) € State x State x D} x D* x N, we assume « (cs) T ds and

someMeaningHolds(ds[h],n1,m2), and we show:

m € cs[h] < n2 € cs[h]

From someMeaningHolds(ds[h],n1,7m2) and the definition of someMeaningHolds (which can
be found in Definition 37), we know that there exists (EF,(ti1,...,t;)) € EdgeFact, X

GroundTerm® such that:

EF(ty,...,t;) € ds[h] (D.11)
[[EF]]T(tlw-‘?tiunth) (D12)
We have:
d(cs) Cds

= «a(es[h]) C ds[h]

= «a(es[h]) D ds[h] (using the definition of C)

= FEF(t1,...,t;) € a(cslh]) (using (D.11))

= [EF](t1,...,ti,cs[h]) (using the definition of « from Equation (6.3))

= V(n1,m2) € State® .[EF],(t1,... ,t;,n1,m2) = (m € cs[h] < ny € cs[h])

(using Definition 33, which defines [EF] for backward-relational-fact schemas)

[EF](t1, ... tism,m2) = (m € cs[h] & na2 € cs[h])

4

(instantiating with 77 and 7))
= 1 € cs[h] & ng € cs[h] (using (D.12))
|

Lemma 6 If all propagation rules in a backward Rhodium optimization O are sound then

Fo as defined in (6.2) is sound.

Proof
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We need to show:
Y(n,cs,ds) € Node x D} x D*
A (cs) Eds = @ (F.(n,cs)) C Fo(n,ds)
Pick (n,cs,ds) € Node x D} x D*, assume & (cs) C ds, and show « (F.(n,cs)) C Fo(n,ds).

To show o (F.(n,ds)) T Fop(n,ds), we need to show that ¥V h' . a(F.(n,cs)[h']) C
Fo(n,ds)[].

So pick A/, and show «a(F.(n,cs)[h']) C Fo(n,ds)[h'], which, using the definition of C is
a(F.(n,es)[W]) 2 Fo(n,ds)[h']. To show this, pick z € Fo(n,ds)[l], and show that:

x € a(F.(n,cs)[h]) (D.13)

Using the definition of Fp from Equation (6.2), x € Fo(n,ds)[h'] implies that there exists
af, EF, i, (t1,...,t;), and ¢ such that:

xr = H(EF(tl,...,ti)) (D14)
(if ¢ then EF(ty,...,t;)@in[h']) € O (D.15)
[[w]]b(07 dS, n) (Dlﬁ)

Using the definition of « from (6.3), we get:

a(Fe(n,cs)[)]) ={EF(t1,...,t;) | EF € EdgeFacty A j = arity(EF) A
(t1,...,t;) € GroundTerm? A (D.17)

[EF|(t1,...,t;, Fe(n,cs)[h'])

To show (D.13), because of (D.14) and the fact that 0( EF (t1,...,t;)) = EF(0(t1),...,0(t;)),
we must show that EF(0(t1),...,0(t;)) € a(F.(n,cs)[h/]. Using (D.17), this amounts to

showing that the following two conditions hold:

EF € EdgeFacty Ni = arity(EF) A (0(t1), . ..,0(t;)) € GroundTerm®  (D.18)

[EF](0(t1), ..., 0(t;), Fe(n,es)[R']) (D.19)
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Condition (D.18) follows directly from (D.15), and the fact that rules in O satisfy basic type

correctness requirements.

To show (D.19), there are two cases:

e EF is a predicate-fact schema. Then, by the definition of [EF] for predicate-fact schemas

(Definition 32), the condition that we need to show, condition (D.19), becomes:

V' € Fe(n,cs)[h'] . [EF],(0(t1),...,0(t:),n")

To show this, pick ' € F.(n,cs)[h’], and show:

[[EF]]p(e(tl)v"' 79(ti)777,) (DQO)

From 7' € F.(n,cs)[h'] and the definition of F, from Equation (6.1), we know that there
exists n € State and h € N such that:

n € cs[h] (D.21)

B0 < hon (D.22)

Because all propagation rules in the Rhodium optimization O are sound, we know
from (D.15) that the rule (if ¢ then EF(ti,...,t;)@out[h']) must be sound. Since EF

is predicate-fact schema, this means that the rule satisfies (bwd-prop-sound-pr).

We instantiate (bwd-prop-sound-pr): the first two conditions of the antecedent are met
from (D.16) and (D.22), and the third condition of the antecedent follows from (D.21),
o (cs) € ds and Lemma 12. By instantiating (bwd-prop-sound-pr), we get (D.20), which

is what we had to show.

e EF is arelational-fact schema. Then, by the definition of [ EF] for relational-fact schemas
(Definition 33), the condition that we need to show, condition (D.19), becomes (where I

have renamed the 7,72 quantifier to 0}, n}):

Y(n,,mh) € State® .

[EF]-(0(t1), ..., 0t:), n1,m) = (m € Fe(n, cs)[h'] < 1 € Fe(n, cs)[h'])
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To show this, pick (n},75) € State?, assume:

[EF]-(0(t1),-- -, 0(t:), ny,m2) (D.23)

and show:

(m € Fe(n,cs)[h'] < ny € Fe(n, cs)[h])

To show this, we show 7] € F.(n,cs)[h'] = nh € F.(n,cs)[l/], and then n) €
F.(n,cs)[)] = n) € F.(n,cs)[I].

— To show 1) € F.(n,cs)[h'] = n) € Fe(n,cs)[h'], we assume 7] € F,(n,cs)[h'], and show
ny € Fe(n,cs)[h].
From the definition of F, in Equation (6.1), we get (where I have renamed 7, n’ and 4
to n', n and h):
Fo(n,cs)[h'] = {n' | 3n € State,h €N . [n € es[h] A I, 5f' < h,n]} (D.24)
Since ] € F.(n,cs)['], we therefore have:
31 € State,h € N . [p € es|h] A B, < h,n]

Skolemizing this existential with n; for n and h for h, we get:

m € cslh) (D.25)

h/ﬂ?i (l h?ﬂl (D26)

Because all propagation rules in the Rhodium optimization O are sound, we know
from (D.15) that the rule (if ¢ then EF(ti,...,t;)@out[h’]) must be sound. Since
EF is relational-fact schema, this means that the rule satisfies (bwd-prop-sound-rel-1)
and (bwd-prop-sound-rel-2).

We instantiate (bwd-prop-sound-rel-1): the first condition of the antecedent is
met from (D.23), and the second condition is met from (D.16). By instantiat-
ing (bwd-prop-sound-rel-1), we get (where I have renamed the 7] and 7} quantifiers

to m1 and 72):

Iy € State . ', 1, < by < Ty € State . B b < hyma
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Combined with (D.26), this gives Iny € State . 1/, 1) <% h,ms, which skolemized, gives
us:

Wy < o (D.27)
To show 0 € F.(n,cs)[l'], using Equation (D.24) and (D.27), it suffices to show:

12 € cs[h] (D.28)

We now instantiate (bwd-prop-sound-rel-2): the first condition of the antecedent is met
from (D.23), the second is met from (D.16), the third is met from (D.26), and the fourth

is met from (D.27). By instantiating (bwd-prop-sound-rel-2), we get:
m = n2 V someMeaningHolds(ds[h], 1, 12)

If m = n2, then from (D.25), we get n2 € cs[h], which is what we had to show in (D.28).
Otherwise, we have that someMeaningHolds(ds[h],n1,72). Then, from @ (cs) C ds,
someMeaningHolds(ds[h],n1,m2), and Lemma 13, we get that n; € cs[h] < ny € cs[h],
which, combined with (D.25), gives 12 € ¢s[h], which is what we had to show in (D.28).
— To show nh € Fe(n,cs)[h'] = n} € F.(n,cs)[h], we proceed in a way that is exactly

symmetric to the ] € F.(n,cs)[h'] = 0 € F.(n,cs)[h'] case.

Lemma 7 If all transformation rules in a backward Rhodium program O are sound, then

Ro as defined in (6.4) is sound.
Proof

We need to show:

Y(n,ds,g) € Node x D* x Graph.
Ro(n,ds) =g =
(n,ds) (D.29)
[Ves € Df.d (cs) E ds =

_
Fe(n,cs) Cc Se(g, cs)(OutEdgesg)]
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Pick (n,ds,g) € Node x D* x Graph, assume Ro(n,ds) = g, then pick ¢s € D, assume
@ (cs) C ds and show:

—
F.(n,cs) Cc Se(g, cs)(OutEdges)

By the definition of Rp from Equation (6.4), and from Ro(n,ds) = g, we know that there
exists 1, # and s such that:

(if ¢ then transform s) € O (D.30)
g = singleNodeGraph(n,0(s)) (D.31)
[2]s(0, ds, n) (D.32)
stmtAt(n') = 0(s) where n’ is the node from the single-node graph g (D.33)

From (D.31), g is a single node CFG. Furthermore, from (D.33) we know that n’ is the node

in g. As a result, we get:

_
Sc(g,cs)(Out Edgesy) = Fe(n', cs)

Thus, we need to show:

F.(n,cs) C. Fa.(n, cs)

V B .F.(n,cs)[h] C. F.(n',cs)[h]

Pick an A/, and show:

F.(n,es)[h'] E. F.(n/,cs)[N]

By the definition of =, this is:

F.(n,cs)[h'] C F.(n',cs)[h]
To show this, pick 1’ € F.(n,cs)[h'], and show:

n' € F.(n',cs)[M] (D.34)
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From 7' € F.(n,cs)[h'] and the definition of F, from Equation (6.1), we know that there
exists n € State and h € N such that:

n € cs[h] (D.35)

W, < by (D.36)

Because all transformation rules in the Rhodium optimization O are sound, we know

from (D.30) that the rule if ¢ then transform s satisfies (bwd-trans-sound).

We instantiate (bwd-trans-sound): the first three conditions of the antecedent are met
from (D.32), (D.36) and (D.33), and the fourth condition of the antecedent follows
from (D.35), @(cs) C ds and Lemma 12. By instantiating (bwd-trans-sound), we get

that there exists an n” € State such that:

o' by (D.37)

n = 1"V someMeaningHolds(ds[h],n,n") (D.38)

We need to show (D.34), which is / € F.(n/,cs)[l']. From I',5/ < h,n’ in Equation (D.37),

and from the definition of F, in Equation (6.1), it suffices to show:

0" € cs[h] (D.39)

If n =", then from (D.35), we immediately get (D.39).

Otherwise, from (D.38), we get someMeaningHolds(ds[h],n,1"). Then, from @ (cs) C ds,
someMeaningHolds(ds[h],n,n"), and Lemma 13, we get that n € cs[h] < n” € es[h], which
combined with (D.35), gives us n” € cs[h], which is what had to be shown in (D.39).
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