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The Future of Storage
Hard Drives PCle-Flash PCle-NVM

2007 20137
Lat.: 7.1ms 68us 12us
BW: 2.6MB/s 250MB/s 1.7GB/s
1x 104x 591x = 2.89x/yr
1x 96X 669x = 2.95x/yr

*Random 4KB Reads from user space



Software Latency Costs
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Architecting a High Performance SSD

 Hardware architecture and software layers
imit performance

* HW/SW interface critical to good performance

* Careful co-design provides significant benefits
— Increased bandwidth
— Decreased latencies
— Increased concurrency
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Moneta Architecture
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Moneta Architecture Overview

Application

File System

OS 10 Stack

Moneta Driver

PCle 1.1 x8 (2GB/s Full Duplex)
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Advanced Memory Technology
Characteristics

 Work with any fast NVM:
— DRAM-like speed
— DRAM-like interface

* Phase Change Memory
— Coming soon
— Simple wear leveling: Start Gap [Micro 2009]
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Moneta: Modeling Advanced NVMs

Built on RAMP’s BEE3 board
PCle 1.1 x8 host connection
250MHz design

DDR2 DRAM emulates NVMs
— Adjust timings to match PCM
— RAS-CAS Delay for reads
— Precharge latency for writes

I "

Projected Latency 48 ns 150 ns
ﬁ Latency projections from [B.C. Lee, ISCA’09] 9




Overview

* Motivation

 Moneta Architecture

* Optimizing Moneta
— Interface & Software
— Microarchitecture

* Performance Analysis
e Conclusion
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Optimized Software is Critical

* Baseline Latency (4KB) 25 e coste
— Hardware: 8.2 us 20 - . m PCM
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Removing the 10 Scheduler

 Reduces executed code 25 = PCM

— 10 Sched code 20 . " Ring
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Lock Free Tag Pool

* Compare-and-swap operations
* Tag indexed data structures

e Use processor ID as hint for where to search in
tag structure
— Reduces concurrency conflicts
— Reduces cache-line misses
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Co-design HW/SW Interface

* Baseline uses multiple PIO writes to send
command

 Reduce command word to 64 bits
— Allows a single PIO write to issue a request
— No need for locks to protect request issue

* Remove DMA address from command

— Pre-allocate buffers during initialization
— Static buffer address for each tag

<
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Atomic Operations

* Lock-Free Data Structures 25 = PCM
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Add Spin-Waits

* Spin-waits vs. sleeping 25 m PCM
— Spin for < 4KB requests 50 __I Ring
I m DMA
— Sleep for larger requests ~ _ I |
g 15 __I ® Wait
> I I ® Interrupt
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Moneta Bandwidth

Random Write Accesses
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CPU Utilization

Random 4KB Read/Write Accesses
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Zero-Copy

* Trade-off multiple PIO writes and zero-copy IO

* Currently faster for us to copy in the driver
than it is to write multiple words to the
hardware to issue a request

e 128-bit or cache-line sized PIO writes needed
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Balancing Bandwidth Usage

e Full duplex PCle should Random R/W Accesses
see better R/W BW :(5) **********
* Smarter HW request 23,0
scheduling = more BW 225
— Two request queues: one § i(s)
for reads, one for writes &, /Jé_'
— Alternate between Qs on - 0.5
each buffer allocation 0.0
0.5 8 128
Access Size (KB)

=+=Single Queue Ideal
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Moneta Architecture Changes

’l Ring ‘ é \
Control ‘# 16GB
Read I g PeM
> Request _’l Transfer © 16GE
. Queue Buffers an
Host via () PCM
= | Scoreboard = I - =
P10 Write 3 TeaB
- Request _,l DMA g#
Queue l Control - U PCM
16GB
Tag Status PCM
Registers \J
Host via

DMA

< :




Balancing Bandwidth Usage

Full duplex PCle should
see better R/W BW

Smarter HW request
scheduling = more BW

— Two request queues: one
for reads, one for writes

— Alternate between Qs on
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Round-Robin Scheduling

* Prevent requests from starving other requests

* Allocate a buffer and then put request at back
of queue

e Attains much better small request throughput
in the presence of large requests

e 12x improvement in small request BW
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Moneta Architecture Changes
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Effects of Memory Latency

Moneta tolerates memory 3.0

latencies up to 1us without Q 2:5 \\x\
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NVMs for Storage vs DRAM Replacement

* Write coalescing
— Storage must guarantee durability by closing row
— DRAM leaves row open to enable coalescing

e Row buffer size should match access size
— Large accesses for storage
— Cache-line sized for memory

* Peak memory activity limited by PCle BW

e Storage and DRAM replacement are different and
should be optimized differently
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System Overview

64GB DRAM 306 !
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Workloads

Name Footprint  Description

Basic 10 Benchmarks

XDD NoFS 64 GB Low-level 10 performance without file system
XDD XFS 64 GB XFS file system performance

Database Applications
Berkeley-DB Btree 16 GB Transactional updates to btree key/value store
Berkeley-DB HashTable 16 GB Transactional updates to hash table key/value store
BiologicalNetworks 35GB Biological database queried for properties of genes and

biological-networks

PTF 50 GB Palomar Transient Factory sky survey queries

Memory-hungry Applications

DGEMM 21 GB Matrix multiply with 30,000 x 30,000 matrices

NAS Parallel Benchmarks 8-35 GB 7 apps from NPB suite modeling scientific workloads
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Bandwidth w/o File System
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Bandwidth with XFS

Raw IO

Large Accesses (4MB) Small Accesses (4KB)

@ Moneta B FusionlO I SSD-RAID l DISK-RAID
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Database & App Performance
An Opportunity for Leveraging Hardware Optimizations
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Conclusion

* Fast advanced NVMs are coming soon
* We built Moneta to understand the impact of NVMs

— Found that the interface and microarchitecture
are both critical to getting excellent performance

— Many opportunities to move software
optimizations into hardware

 Many open questions exist about the architecture of
fast SSDs and the systems they interface with
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Thank You!

Any Questions?

NVSL &

volatile Systems Laboratory

&) UCSDC

! Computer Science and Englneerln
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