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The Future of Storage 

Lat.: 7.1ms 
BW: 2.6MB/s 
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Software Latency Costs 
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Architecting a High Performance SSD 

• Hardware architecture and software layers 
limit performance 

• HW/SW interface critical to good performance 

• Careful co-design provides significant benefits 

– Increased bandwidth 

– Decreased latencies 

– Increased concurrency 
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Overview 

• Motivation 

• Moneta Architecture 

• Optimizing Moneta 

• Performance Analysis 

• Conclusion 
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Moneta Architecture 
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Moneta Architecture Overview 

PCIe 1.1 x8 (2GB/s Full Duplex) 
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Advanced Memory Technology 
Characteristics 

• Work with any fast NVM: 

– DRAM-like speed 

– DRAM-like interface 

• Phase Change Memory 

– Coming soon 

– Simple wear leveling: Start Gap [Micro 2009] 
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Moneta: Modeling Advanced NVMs 

• Built on RAMP’s BEE3 board 

• PCIe 1.1 x8 host connection 

• 250MHz design 

• DDR2 DRAM emulates NVMs 
– Adjust timings to match PCM  

– RAS-CAS Delay for reads 

– Precharge latency for writes 

9 

Read Write 

Projected Latency  48 ns 150 ns 

Latency projections from [B.C. Lee, ISCA’09] 



Overview 

• Motivation 

• Moneta Architecture 

• Optimizing Moneta 

– Interface & Software 

– Microarchitecture 

• Performance Analysis 

• Conclusion 
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Optimized Software is Critical 

• Baseline Latency (4KB) 

– Hardware: 8.2 us 

– Software: 13.4 us 

 

• Optimize hardware and 
software 

 

 

Hardware costs 

11 



0

5

10

15

20

25

La
te

n
cy

 (
u

s)
 

PCM

Ring

DMA

Wait

Interrupt

Issue

Copy

Schedule

OS/User

Removing the IO Scheduler 

• Reduces executed code 
– IO Sched code 

– Kernel request queuing 

• Improves concurrency 
– Requests not serialized 

through IO scheduler 

– Multiple threads in 
driver 

 

• 10% SW latency savings 
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Lock Free Tag Pool 

• Compare-and-swap operations 

• Tag indexed data structures 

• Use processor ID as hint for where to search in 
tag structure 

– Reduces concurrency conflicts 

– Reduces cache-line misses 
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Co-design HW/SW Interface 

• Baseline uses multiple PIO writes to send 
command 

• Reduce command word to 64 bits 

– Allows a single PIO write to issue a request 

– No need for locks to protect request issue 

• Remove DMA address from command 

– Pre-allocate buffers during initialization 

– Static buffer address for each tag 
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Atomic Operations 

• Lock-Free Data Structures 

• Atomic HW/SW Interface 

 

 

• Increased concurrency 

• 10% less latency vs. NoSched 
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Add Spin-Waits 

• Spin-waits vs. sleeping 

– Spin for < 4KB requests 

– Sleep for larger requests 

 

• 5us of software latency 

– 54% less SW vs. Atomic 

– 62% vs. Base 
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 Moneta Bandwidth 
Random Write Accesses 
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CPU Utilization 
Random 4KB Read/Write Accesses 
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Zero-Copy 

• Trade-off multiple PIO writes and zero-copy IO 

• Currently faster for us to copy in the driver 
than it is to write multiple words to the 
hardware to issue a request 

• 128-bit or cache-line sized PIO writes needed 
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Overview 

• Motivation 

• Moneta Architecture 

• Optimizing Moneta 

– Interface & Software 

– Microarchitecture 

• Performance Analysis 

• Conclusion 
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Balancing Bandwidth Usage 

• Full duplex PCIe should 
see better R/W BW 

• Smarter HW request 
scheduling = more BW 

– Two request queues: one 
for reads, one for writes 

– Alternate between Qs on 
each buffer allocation 
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Moneta Architecture Changes 
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Balancing Bandwidth Usage 

• Full duplex PCIe should 
see better R/W BW 

• Smarter HW request 
scheduling = more BW 

– Two request queues: one 
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Round-Robin Scheduling 

• Prevent requests from starving other requests 

• Allocate a buffer and then put request at back 
of queue 

• Attains much better small request throughput 
in the presence of large requests 

• 12x improvement in small request BW 
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Moneta Architecture Changes 
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Effects of Memory Latency 

• Moneta tolerates memory 
latencies up to 1us without 
BW loss 

• Increased parallelism hides 
extra memory latency 
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NVMs for Storage vs DRAM Replacement 

• Write coalescing 
– Storage must guarantee durability by closing row 

– DRAM leaves row open to enable coalescing 

• Row buffer size should match access size 
– Large accesses for storage 

– Cache-line sized for memory 

• Peak memory activity limited by PCIe BW 

• Storage and DRAM replacement are different and 
should be optimized differently 
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Overview 

• Motivation 

• Moneta Architecture 

• Optimizing Moneta 

• Performance Analysis 

• Conclusion 

 

28 



System Overview 

Memory and Device Interconnect Capacity 

Fusion-IO IODrive PCIe 4x 80GB 

SLC NAND Flash SW RAID-0 PCIe 4x SATA 2 Controller 128GB 

Disk HW RAID-0 PCIe 4x RAID Controller 4TB 

Moneta PCIe 8x 64GB 

Moneta-4x PCIe 4x 64GB 

Moneta 
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Workloads 
Name Footprint Description 

Basic IO Benchmarks 

XDD NoFS 64 GB Low-level IO performance without file system 

XDD XFS 64 GB XFS file system performance 

Database Applications 

Berkeley-DB Btree 16 GB Transactional updates to btree key/value store 

Berkeley-DB HashTable 16 GB Transactional updates to hash table key/value store 

BiologicalNetworks 35 GB Biological database queried for properties of genes and 
biological-networks 

PTF 50 GB Palomar Transient Factory sky survey queries 

Memory-hungry  Applications 

DGEMM 21 GB Matrix multiply with 30,000 x 30,000 matrices 

NAS Parallel Benchmarks 8-35 GB 7 apps from NPB suite modeling scientific workloads 
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XDD Bandwidth Comparison 
50/50 Read/Write Random Accesses 
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Bandwidth w/o File System 
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Database & App Performance 
An Opportunity for Leveraging Hardware Optimizations 
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Conclusion 

• Fast advanced NVMs are coming soon 

• We built Moneta to understand the impact of NVMs 

– Found that the interface and microarchitecture 
are both critical to getting excellent performance 

– Many opportunities to move software 
optimizations into hardware  

• Many open questions exist about the architecture of 
fast SSDs and the systems they interface with 
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Thank You! 

 

 

Any Questions? 
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