
Moneta:
A High-Performance Storage Architecture for
Next-generation, Non-volatile Memories

Adrian M. Caulfield
Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, Steven Swanson

Non-Volatile Systems Laboratory,
Department of Computer Science and Engineering

University of California, San Diego

The Future of Storage

Lat.: 7.1ms
BW: 2.6MB/s

 1x
 1x

68us
250MB/s

104x
96x

12us
1.7GB/s

591x
669x

*Random 4KB Reads from user space

Hard Drives PCIe-Flash
2007

NVM

PCIe-NVM
2013?

= 2.89x/yr

= 2.95x/yr

2

Software Latency Costs

3

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

PCM

Flash

Disk

Log Request Latency (us)

File System Operating System Hardware

Architecting a High Performance SSD

• Hardware architecture and software layers
limit performance

• HW/SW interface critical to good performance

• Careful co-design provides significant benefits

– Increased bandwidth

– Decreased latencies

– Increased concurrency

4

Overview

• Motivation

• Moneta Architecture

• Optimizing Moneta

• Performance Analysis

• Conclusion

5

Moneta Architecture

6

16GB
PCM

16GB
PCM

16GB
PCM

16GB
PCM

R
in

g
(4

 G
B

/s
)

Ring
Control

Transfer
Buffers

DMA
Control

Scoreboard

Tag Status
Registers

Host via
PIO

Host via
DMA

Request
Queue

Moneta Architecture Overview

PCIe 1.1 x8 (2GB/s Full Duplex)

7

Moneta Driver

OS IO Stack

Application

File System

Advanced Memory Technology
Characteristics

• Work with any fast NVM:

– DRAM-like speed

– DRAM-like interface

• Phase Change Memory

– Coming soon

– Simple wear leveling: Start Gap [Micro 2009]

8

Moneta: Modeling Advanced NVMs

• Built on RAMP’s BEE3 board

• PCIe 1.1 x8 host connection

• 250MHz design

• DDR2 DRAM emulates NVMs
– Adjust timings to match PCM

– RAS-CAS Delay for reads

– Precharge latency for writes

9

Read Write

Projected Latency 48 ns 150 ns

Latency projections from [B.C. Lee, ISCA’09]

Overview

• Motivation

• Moneta Architecture

• Optimizing Moneta

– Interface & Software

– Microarchitecture

• Performance Analysis

• Conclusion

10

0

5

10

15

20

25

Base

La
te

n
cy

 (
u

s)

PCM

Ring

DMA

Wait

Interrupt

Issue

Copy

Schedule

OS/User

Optimized Software is Critical

• Baseline Latency (4KB)

– Hardware: 8.2 us

– Software: 13.4 us

• Optimize hardware and
software

Hardware costs

11

0

5

10

15

20

25

La
te

n
cy

 (
u

s)

PCM

Ring

DMA

Wait

Interrupt

Issue

Copy

Schedule

OS/User

Removing the IO Scheduler

• Reduces executed code
– IO Sched code

– Kernel request queuing

• Improves concurrency
– Requests not serialized

through IO scheduler

– Multiple threads in
driver

• 10% SW latency savings

12

Lock Free Tag Pool

• Compare-and-swap operations

• Tag indexed data structures

• Use processor ID as hint for where to search in
tag structure

– Reduces concurrency conflicts

– Reduces cache-line misses

13

Co-design HW/SW Interface

• Baseline uses multiple PIO writes to send
command

• Reduce command word to 64 bits

– Allows a single PIO write to issue a request

– No need for locks to protect request issue

• Remove DMA address from command

– Pre-allocate buffers during initialization

– Static buffer address for each tag

14

0

5

10

15

20

25

La
te

n
cy

 (
u

s)

PCM

Ring

DMA

Wait

Interrupt

Issue

Copy

Schedule

OS/User

Atomic Operations

• Lock-Free Data Structures

• Atomic HW/SW Interface

• Increased concurrency

• 10% less latency vs. NoSched

15

0

5

10

15

20

25

La
te

n
cy

 (
u

s)

PCM

Ring

DMA

Wait

Interrupt

Issue

Copy

Schedule

OS/User

Add Spin-Waits

• Spin-waits vs. sleeping

– Spin for < 4KB requests

– Sleep for larger requests

• 5us of software latency

– 54% less SW vs. Atomic

– 62% vs. Base

16

 Moneta Bandwidth
Random Write Accesses

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.5 2 8 32 128 512

B
an

d
w

id
th

 (
G

B
/s

)

Access Size (KB)

Base

NoSched

Atomic

SpinWait

Ideal

1M IOPS

17

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.5 2 8 32 128 512

B
an

d
w

id
th

 (
G

B
/s

)

Access Size (KB)

Base

NoSched

Atomic

Ideal

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.5 2 8 32 128 512

B
an

d
w

id
th

 (
G

B
/s

)

Access Size (KB)

Base

NoSched

Ideal

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.5 2 8 32 128 512

B
an

d
w

id
th

 (
G

B
/s

)

Access Size (KB)

Base

Ideal

CPU Utilization
Random 4KB Read/Write Accesses

18

0

2

4

6

8

10

12

14

Baseline NoSched Atomic Spin

C
P

U
s

/
G

B
/s

Zero-Copy

• Trade-off multiple PIO writes and zero-copy IO

• Currently faster for us to copy in the driver
than it is to write multiple words to the
hardware to issue a request

• 128-bit or cache-line sized PIO writes needed

19

Overview

• Motivation

• Moneta Architecture

• Optimizing Moneta

– Interface & Software

– Microarchitecture

• Performance Analysis

• Conclusion

20

Balancing Bandwidth Usage

• Full duplex PCIe should
see better R/W BW

• Smarter HW request
scheduling = more BW

– Two request queues: one
for reads, one for writes

– Alternate between Qs on
each buffer allocation

21

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5 8 128
B

an
d

w
id

th
 (

G
B

/s
)

Access Size (KB)

Random R/W Accesses

Single Queue Ideal

Moneta Architecture Changes

22

16GB
PCM

16GB
PCM

16GB
PCM

16GB
PCM

R
in

g
(4

 G
B

/s
)

Ring
Control

Transfer
Buffers

DMA
Control

Scoreboard

Tag Status
Registers

Host via
PIO

Host via
DMA

Write
Request
Queue

Read
Request
Queue

Balancing Bandwidth Usage

• Full duplex PCIe should
see better R/W BW

• Smarter HW request
scheduling = more BW

– Two request queues: one
for reads, one for writes

– Alternate between Qs on
each buffer allocation 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.5 8 128
B

an
d

w
id

th
 (

G
B

/s
)

Access Size (KB)

Random R/W Accesses

Single Queue RW Queues Ideal

23

Round-Robin Scheduling

• Prevent requests from starving other requests

• Allocate a buffer and then put request at back
of queue

• Attains much better small request throughput
in the presence of large requests

• 12x improvement in small request BW

24

Moneta Architecture Changes

25

16GB
PCM

16GB
PCM

16GB
PCM

16GB
PCM

R
in

g
(4

 G
B

/s
)

Ring
Control

Transfer
Buffers

DMA
Control

Scoreboard

Tag Status
Registers

Host via
PIO

Host via
DMA

Write
Request
Queue

Read
Request
Queue

Effects of Memory Latency

• Moneta tolerates memory
latencies up to 1us without
BW loss

• Increased parallelism hides
extra memory latency

26

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4
n

s

6
4

n
s

2
5

6
n

s

1
u

s

4
u

s

1
6

u
s

6
4

u
s

1
2

8
u

s

B
an

d
w

id
th

 (
G

B
/s

)
Memory Latency

8 Controllers 4 Controllers

2 Controllers 1 Controller

NVMs for Storage vs DRAM Replacement

• Write coalescing
– Storage must guarantee durability by closing row

– DRAM leaves row open to enable coalescing

• Row buffer size should match access size
– Large accesses for storage

– Cache-line sized for memory

• Peak memory activity limited by PCIe BW

• Storage and DRAM replacement are different and
should be optimized differently

27

Overview

• Motivation

• Moneta Architecture

• Optimizing Moneta

• Performance Analysis

• Conclusion

28

System Overview

Memory and Device Interconnect Capacity

Fusion-IO IODrive PCIe 4x 80GB

SLC NAND Flash SW RAID-0 PCIe 4x SATA 2 Controller 128GB

Disk HW RAID-0 PCIe 4x RAID Controller 4TB

Moneta PCIe 8x 64GB

Moneta-4x PCIe 4x 64GB

Moneta

29

Workloads
Name Footprint Description

Basic IO Benchmarks

XDD NoFS 64 GB Low-level IO performance without file system

XDD XFS 64 GB XFS file system performance

Database Applications

Berkeley-DB Btree 16 GB Transactional updates to btree key/value store

Berkeley-DB HashTable 16 GB Transactional updates to hash table key/value store

BiologicalNetworks 35 GB Biological database queried for properties of genes and
biological-networks

PTF 50 GB Palomar Transient Factory sky survey queries

Memory-hungry Applications

DGEMM 21 GB Matrix multiply with 30,000 x 30,000 matrices

NAS Parallel Benchmarks 8-35 GB 7 apps from NPB suite modeling scientific workloads

30

XDD Bandwidth Comparison
50/50 Read/Write Random Accesses

31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5 2 8 32 128 512

B
an

d
w

id
th

 (
G

B
/s

)

Access Size (KB)

Disk

SSD

FusionIO

Moneta

Moneta-4x

Bandwidth w/o File System

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Read Write Read Write

Large Accesses (4MB) Small Accesses (4KB)

B
an

d
w

id
th

 (
G

B
/s

)

Moneta FusionIO SSD-RAID DISK-RAID

32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Read Write Read Write

4MB Accesses 4KB Accesses

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Read Write Read Write

Large Accesses (4MB) Small Accesses (4KB)

B
an

d
w

id
th

 (
G

B
/s

)

Moneta FusionIO SSD-RAID DISK-RAID

Bandwidth with XFS

Raw IO

33

Database & App Performance
An Opportunity for Leveraging Hardware Optimizations

0.1

1

10

100

1000

10000

Lo
g

Sp
e

e
d

u
p

 v
s

D
IS

K
-R

A
ID

XDD 4KB RW Btree
HashTable Bio
PTF

0.1

1

10

100

1000

10000

XDD 4KB RW DGEMM lu bt sp is

34

Conclusion

• Fast advanced NVMs are coming soon

• We built Moneta to understand the impact of NVMs

– Found that the interface and microarchitecture
are both critical to getting excellent performance

– Many opportunities to move software
optimizations into hardware

• Many open questions exist about the architecture of
fast SSDs and the systems they interface with

35

Thank You!

Any Questions?

36

